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Stock Prices Predictability at Long-horizons:  
Two Tales from the Time-Frequency Domain
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Abstract

Accepting non-linearities as an endemic feature of financial data, this paper re-exam-
ines Cochrane’s “new fact in finance” hypothesis (Cochrane, Economic Perspectives-FRB 
of Chicago 23, 36–58, 1999). By implementing two methods, frequently encountered in 
digital signal processing analysis, (Undecimated Wavelet Transform and Empirical Mode 
Decomposition both methods extract components in the time-frequency domain), we 
decompose the real stock prices and the real dividends, for the US economy, into signals 
that correspond to distinctive frequency bands. Armed with the decomposed signals and 
acting within a non-linear framework, the predictability of stock prices through the use 
of dividends is assessed at alternative horizons. It is shown that the “new fact in finance” 
hypothesis is a valid proposition, provided that dividends contribute significantly to pre-
dicting stock prices at horizons spanning beyond 32 months. The identified predictabil-
ity is entirely non-linear in nature.

Prognostizierbarkeit von Aktienkursen in der langen Frist:  
Zwei Ansatzpunkte auf der Zeit- / Frequenzebene

Zusammenfassung

Dieser Artikel überprüft erneut die „new fact in finance“ Hypothese von Cochrane. Die 
Verfasser akzeptieren dabei die Nichtlinearität von Finanzdaten als endemische Fakten. 
Unter Anwendung von zwei Methoden, die in digitalen Signalverarbeitungsverfahren 
häufig zum Einsatz kommen – die stationäre Wavelet-Transformation und die empirische 
Modenzerlegung teilen die Verfasser die realen Aktienkurse und die realen Dividenden 
der US amerikanischen Volkswirtschaft in Signale bestimmter Frequenzbänder auf. Unter 
Einbeziehung der generierten Signale und des Verhaltens in einem nicht-linearen Um-
feld, wird die Vorhersagbarkeit von Aktienkursen mit der Hilfe von Dividenden über ver-
schiedene Zeitfenster überprüft. Die „new fact in finance“ Hypothese kann bestätigt wer-
den. Dies gilt allerdings nur unter der Voraussetzung, dass Dividenden einen signifikan-
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ten Beitrag für die Aktienkursvorhersage für Zeitfenster über 32 Monate leisten. Die im 
Beitrag identifizierte Prognostizierbarkeit ist jedoch ausschließlich nichtlinearer Natur.

Keywords: Stock prices and dividends, Time-frequency decomposition.

JEL classification: G10, C14, C22, C29

I.  Introduction

During the last decade, the espousal of non-linear specifications, under the 
Cochrane’s “new fact in finance” prism, is an empirical norm that attracts mo-
mentous attention in the literature (such as Psaradakis et al., 2004; Rapach and 
Wohar, 2005; McMillan, 2007). The theoretical underpinnings, stemming from 
the Present Value (PV) model (Shiller, 1981), nominate the utilisation of divi-
dends (Campbell and Shiller, 1988) as a key determinant in explaining stock 
prices’ future movements. The PV model, despite its simplicity and inherent in-
tuitive soundness, is open to criticism mainly due to its conservative nature (e. g. 
it does not account for intangible assets like patents and brand names, or possi-
ble transaction costs). Unsurprisingly, the empirically stylised facts provide 
mixed evidence towards the adequacy of the linear PV model to describe in a 
satisfactory way the adjustment of stock prices to the steady state condition, im-
plied by the underlying fundamentals. 

Two strands of empirical literature have been unfolded. The first strand fails to 
justify the capacity of dividends (or valuation ratios) to contribute significantly 
to pricing stocks, while the second strand validates the efficacy of dividends (or 
valuation ratios) in pricing stocks adequately. The former strand of the literature 
is supported by more than a few studies (e. g. Shiller, 1981; Lanne, 2002; Fama 
and French, 2002; Torous et al., 2004)), raising several justifications in order to: 
a) criticize past favorable inferences towards stock prices predictability or b) the-
oretically validate the observed systematic divergence from the long-run equilib-
rium. On the one hand, possible reasons for reaching a misleading statistical in-
ference may be: a) the inadequacy of the adopted methodological framework 
(e. g. linear long-horizon regressions; see Wolf, 2000; Valkanov, 2003) or b) sta-
tistical inference issues (e. g. invalid selection of standard errors; see Ang and 
Bekaert, 2007), on the other hand, the theoretical reasoning for the inability of 
the fundamentals to explain assets’ pricing, includes: a) traders’ erroneous per-
ceptions or more generally the existence of noise traders (Shiller, 1981; Kilian 
and Taylor, 2003), b) collapsing rational bubbles (Evans, 1991) and intrinsic bub-
bles (Froot and Obstfeld, 1991), c) transactions costs (Kapetanios et al., 2006), d) 
traders’ psychology (Summers, 1986; Cutler et al., 1991; Dergiades et al., 2015), 
or e) the existence of a time-varying discount rate (Shiller, 1989). Overall, it can 
be argued that all of the above-mentioned theoretical reasoning encompasses 
some sort of non-linear dynamic which result in equilibrium mis-pricing. 
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The second strand of the literature provides evidence in favor of stock prices’ 
predictability (especially at long-horizons) by using valuation ratios. Early stud-
ies clung onto the linear paradigm (Campbell and Shiller, 1987; Philips and 
Ouliaris, 1988), while in the most recent studies the basic proclivity is to adopt 
a non-linear methodological framework (Kanas, 2005; Rapach and Wohar, 2005; 
McMillan, 2007; Wu and Hu, 2012). No matter whether linear or non-linear 
methodology is implemented, a unanimous finding in the literature suggests 
that stock prices can be predictable at long-horizons without simultaneously 
validating predictability at short-horizons. The above systematically observed 
pattern gave birth to the “new fact in finance” hypothesis, as very eloquently 
coined by Cochrane (1999). 

Campbell and Shiller (1998) find, at a short-horizon (one year), a trifling sup-
port for the predictability of stock returns by the price-dividend ratio, while at 
long-horizons (ten years) significant predictability is verified. Rapach and Wo-
har (2005), by concentrating on horizons spanning from one to ten years, iden-
tify a similar predictability pattern to that of Campbell and Shiller (1998). In 
particular, the price-dividend ratio as well as the price-earnings ratio, both con-
tribute significantly to explaining stock prices growth at horizons spanning 
from six to ten years and from eight to ten years, respectively. Predictability at 
shorter horizons is not verified. Given the inborn inconsistency of the linear 
long-horizon regressions in separating between long-run and short-run predic-
tive power (pointed out by Berkowitz and Giorgianni, 2001), the predictability 
pattern as shaped within the lines of the “new fact in finance” hypothesis is in-
directly attributed to the presence of non-linear features in the data (Campbell 
and Shiller, 1998; Kilian, 1999). Therefore, a fertile ground for further research 
is the supplementary verification of non-linear dynamics (of a general form) at 
the long-horizon predictability of stock prices. Rapach and Wohar (2005) char-
acteristically state that “further analysis of non-linear model specifications for 
valuation ratios is warranted and may help researchers to better understand 
long-horizon stock price predictability”. 

Building on the existing literature, the objective of our study is twofold: a) to 
re-examine the cogency of the “new fact in finance” hypothesis through the im-
plementation of an alternative methodological framework (not previously im-
plemented in similarexercise), and b) to authorise in a sound way the presence 
of non-linear dynamics in the predictability of real stock prices at long-hori-
zons. The contribution of our study relies on the combination of signal process-
ing methods along with non-linear and non-parametric causality techniques, 
framework that allows us to gain more insightful knowledge with respect to the 
non-linear factual linkage between stock prices and dividends at different hori-
zons. 

Utilising the extended dataset of Campbell and Shiller (1998) for the US econ-
omy, our approach allows us, firstly, to decompose the series into signals that 
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correspond to dissimilar frequency bands and, secondly, to ascertain the exist-
ence of a non-linear predictability for the stock prices at short- and long-hori-
zons based on dividends. The decomposition of both series is implemented 
through two alternative signal processing methods, that is, the Empirical Mode 
Decomposition (EMD, hereafter) and the Undecimated Wavelet Transform 
(UWT, hereafter). Once the series components have been extracted, we test the 
null hypothesis of no predictability for all the resulting pairs with identical fre-
quency content. The null hypothesis is tested by two non-linear tests, that is, the 
Hiemstra and Jones (1994) test and the Panchenko (2006) test. Our findings 
confirm the “new fact in finance” hypothesis by identifying predictability only at 
horizons that expand beyond 32 months. Additionally, the identified predicta-
bility can be characterised as entirely non-linear in nature. 

The rest of the paper is organised as follows: section II. presents briefly the 
adopted methodological framework; section III. illustrates the data sources and 
conducts the necessary preliminary analysis; section IV. discusses our empirical 
findings; while section V. concludes. 

II.  Methodological Framework

1.  Empirical Mode Decomposition (EMD)

The EMD method is a recent tool in time-series analysis, which was proposed 
by Huang et al. (1998). Originally, the method has been advanced with a pur-
pose of decomposing a signal into what is known as Intrinsic Mode Functions 
(mphIMFs), so as to implement the Hilbert transform (Hilbert, 1953) at a sec-
ond stage. Once EMD had been proposed, IMFs proved to be a valuable device 
for several other applications, without the necessity to perform the subsequent 
Hilbert Transform. 

In order for a signal to be a valid IMF, it must satisfy the following two con-
ditions: a) the number of local extrema and passings through zero must be equal 
or differ at most by one, and b) the average value of the IMF is locally almost 
zero everywhere. EMD encompasses four essential characteristics that render 
the method significantly powerful when dealing with non-linear and non-sta-
tionary signals. These characteristics are: completeness, orthogonality, locality, 
and adaptivity (Huang et al., 1998). In linear decompositions, completeness and 
orthogonality are considered as necessary conditions. Locality is a central char-
acteristic when non-stationary signals are processed, and adaptivity is a vital 
characteristic for series that exhibit both non-linearities and non-stationarity.

The majority of time-series usually encountered cannot be characterised as 
IMFs. Nevertheless, it is possible to decompose any signal into IMFs plus a re-
sidual term, if we execute an algorithm called the sifting process. Given a time-se-
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ries, say ( )x t , the sifting process algorithm can be summarised into the following 
steps: a) identify all the existing extrema of ( )x t , b) interpolate using cubic 
splines between the identified minima and maxima in order to produce two en-
velopes ( )mine t  and ( )maxe t , c) compute the mean of the two envelopes 

( ) ( ( ) ( )) 2min maxm t e t e t= + /  and finally d) extract the detail ( ) ( ) ( )h t x t m t= - . 
The sifting process is repeated on the detail ( )h t , with some stopping criterion, 
until a first valid IMF signal 1 ( )h t  is received. To identify the second IMF sig-
nal, the previously extracted IMF signal is subtracted from the original time-se-
ries and the same process is repeated on the residual 1 1( ) ( ) ( )r t x t h t= - . The 
same process is repeatedly implemented up to the stage where the last residual 
term, ( )nr t , is strictly monotonic or if it contains at least one extrema. 

(1)	 1 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n nr t X t h t r t r t h t … r t r t h t-= - , = - , , = -

Provided that we are interested in IMFs that occupy a distinct frequency band, 
we utilise the stopping criterion proposed by Rilling et  al. (2003),1 which is 
based on three control thresholds, namely a , 1θ  and 2θ . Once ( )m t  has been 
computed, Rilling et  al. (2003) introduce the evaluation function tσ , which is 
given by Eq. (2): 

(2)	 ( )
( )t

h t
m t

σ =

For a fraction (1 )a-  of the total duration of the signal, the sifting process is 
iterated until 1tσ θ< . For the rest of the signal, it is iterated until 2tσ θ< . Typ-
ical values for the thresholds a , 1θ  and 2theta  are 0 05. , 0 05.  and 110θ . The ra-
tionale for the inclusion of the two threshold values can be traced to the fact 
that the algorithm can take into account abnormally large fluctuations in the 
scrutinised time-series. 

2.  Discrete Wavelet Transform (DWT)

Non-stationarity and non-linearities are both endemic features of economic 
and financial data. The widespread use of wavelet transforms in economics and 
finance is mainly attributed to the capacity of the wavelet techniques to cope 
successfully with the above two features.2 In contrast with the Fourier Transform, 

1  Huang et al. (1998) suggested a stopping criterion, which despite its simplicity exhib-
its several weaknesses. For a discussion see Rilling et al. (2003).

2  A discussion for the usefulness of wavelets in economic and financial analysis can be 
traced in Ramsey (1999). For a recent application of wavelet analysis to economic data 
see Michis (2014).
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which decomposes a complex signal into a sum of sine and cosine functions at 
different frequencies but with infinite length in the time domain, wavelet analy-
sis uses waves with various lengths of time frames. The length of the time frame 
is analogous to the level of frequency resolution. The DWT is based on the suc-
cessive use of high-pass filters named mother wavelets h , and low-pass filters 
named father wavelets g . In the standard DWT, these filters must possess two 
properties. First, they are half-band filters implying that their cut-off frequency 
is in the middle of the frequency band of the starting time-series, and second, 
they are quadrature mirror filters. The latter property means that the power sum 
of the low and the high pass filter equals to one and also that their responses are 
symmetrical around their cut-off frequency. In addition, since half the frequen-
cies of the signal are removed after the use of each filter, half the samples can be 
discarded according to Nyquist’s theorem. Consequently, the filter outputs are 
each time sub-sampled by two. 

In cases where the low pass filter has an impulse response ( )g t , the output 
( )a t  will be equal to its linear convolution (denoted by *) with the signal ( )x t : 

(3)	 ( ) ( ) ( ) ( ) ( )
k

a t g t x t x k g t k
+¥

=-¥

= * = -å

Including the sub-sampling, the outputs [ ]a t  and [ ]d t  of the low and high 
pass filters will respectively be: 

(4)	 ( ) ( ) (2 )
k

a t x k g t k
+¥

=-¥

= -å

(5)	 ( ) ( ) (2 )
k

d t x k h t k
+¥

=-¥

= -å

The appliance of the above two filters makes up for one level of the DWT, 
producing one approximation signal ( )a t  and one detail signal ( )d t . For more 
levels of decomposition, the filters are implemented in succession. Inparticular, 
at the first level, the input series ( )x t  is passed through one high-pass filter giv-
ing the first level detail signal and one low-pass filter, providing the first level 
approximation. At each subsequent level, the approximation signal ( )a t  is fur-
ther analysed into two new signals using the same approach. At the end, our 
outputs consist of one final approximation signal and n  detail signals, where n  is 
the decomposition level.3 

3  The above described process can be depicted graphically through a standard Mal-
lat-tree decomposition diagram.
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In many applications, the step of sub-sampling is omitted and as a result the 
output signals have the same length as the inputs (Starck et al., 2007). This alter-
ation of the DWT can be identified in the literature by many terms, including 
the Stationary Wavelet Transform (SWT), the Redundant Wavelet Transform 
(RWT) and the Undecimated Wavelet Transform (UWT). In this paper, the term 
UWT is adopted. Thus, the outputs of the transform preserve the same lengthas 
the starting time-series, i. e. we retain time correspondence between the various 
approximation and detail outputs. 

The adopted filtering procedure is similar to the one described above with the 
only difference being the fact that the sub-sampling part is omitted. Along with 
the UWT framework, we continue to receive n  detail signals and one approxi-
mation signal as output of the transform. The transition from one level to the 
next is accomplished with the use of the filters below:4 

(6)	 ( )
1 ( ) ( )( ) ( ) ( 2 )j j

n n n
k

a t h a t h k a t k
+¥

+
=-¥

= * = +å

(7)	 ( )
1 ( ) ( )( ) ( ) ( 2 )j j

n n n
k

d t g a t g k a t k
+¥

+
=-¥

= * = +å

where ( )h t  and ( )g t  are the low and high pass filters impulse responses, respec-
tively. The star symbol (*) implies linear convolution and finally, ( )jh  is an indi-
cator function defined by: 

(8)	 ( )
( ) if 2

( )
0 otherwise

j
j

h t t Z
h t

ì , / Îïï=íï ,ïî

III.  Data Sources and Preliminary Analysis

To investigate the predictive power of dividends with respect to the stock pric-
es, we utilise time-series data with monthly frequency spanning from January 
1871 up to February 2013 (1706 observations). Focus of our analysis is the US 
economy. The monthly real stock prices (S) are approximated by monthly aver-
ages of daily closing prices for the S&P 500 composite index. The real dividend 
series (D), corresponding to the S&P 500 composite index, is built by the four 
quarter totals, while monthly observations are attained through linear interpo-
lation. The exact construction details for both variables are reported in 
Shiller(1989), while the utilised time-series can be traced on Robert’s J. Shiller’s 

4  For more details on wavelet decompositions, the reader is referred to Mallat (2008).
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personal web site.5 The evolution of the S  and D over the examined sample is 
illustrated in Figure 1 and Figure 2 below, respectively.6 

To ensure that a possible verified predictability of S  based on D is entirely 
non-linear in nature, a first-moment filtering is of major importance. An effec-
tive first-moment filtering dictates the adoption of a correctly specified model, 
provided that contrarily incorrect causal linkages may be inferred. Consequent-
ly, before the conduction of the first-moment filtering the verification or not of 
a long-run equilibrium is essential in terms of econometric modeling.7 The Jo-
hansen (1988) approach to cointegration indicates the existence of a unique 
cointegrating vector between S and D. In particular, the trace statistic clearly 
rejects the null hypothesis of zero cointegrating vectors (the p-value is equal to 
0.000) while it fails to reject the null hypothesis of at most one cointegrating 
vector (the p-value is equal to 0.353).8 

The presence of cointegration dictates that the first-moment filtering proce-
dure should be conducted through a VECM specification, since otherwise (us-
ing for example a standard VAR model) the long-run dynamics of the involved 
variables will be neglected. As soon as we estimate the optimal VECM specifica-
tion, the first-moment filtered series that correspond to S  and D can be recov-
ered through the respective residuals, denoted from now on as rS  and rD  (see 
Figures 3 and 4). Acting insuch a manner, we warrant that all the linear compo-
nents of the series have been removed. Finally, once the VECM residuals have 
been recovered, we test the identically and independently distributed (i.i.d.) as-
sumption through the BDS test as suggested by Brock et al. (1996). Rejection of 

5  Available at: http: /  / www.econ.yale.edu / ~shiller / data.htm.
6  By examining Figure 1, one may argue in favor of different regimes. As wavelets can 

represent effectively complex series, UWT is capable to cope with “badly behaved data”.
7  Preliminary unit-root and stationarity testing indicates that both variables, stock 

prices and dividends, are integrated of order one. The tests implemented are: 1) ADF, 2) 
GLS-ADF, 3) Phillips–Perron and 4) KPSS.

8  The cointegration results are available upon request.
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     Figure 1: Real S&P 500 Stock Prices (S)	      Figure 2: Real Dividends (D)
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the null i.i.d. hypothesis would be an indication in favor of our adopted non-lin-
ear methodological framework. The BDS test which has been conducted into 
the VECM residuals, irrespective of the embedding dimension, consistently re-
jects, at the 0.01 significance level, the null hypothesis.9 

IV.  Empirical Results

1.  Time-Frequency Decomposition

First, we perform the EMD decomposition on the VECM residual series, that 
is rS  and rD . We derive the first 5 IMFs for the rS  and rD  series (see Figures 3 
and 4). We use the Rilling et al. (2003) stopping criterion with the recommend-
ed convergence values. The residual waveform is used to form the 6th compo-
nent. In Figures 5 and 6, we depict the EMD decompositions for rS  and rD , re-
spectively. We observe that each extracted IMF features decreasing fluctuations 
from its previously extracted IMFs, as dictated by the decomposition process.10 

Our first concern regarding the signal decomposition process is that each sig-
nal extracted from one time series, e. g. rS , needs to encompass the same fre-
quency content with its counterpart from the other series, e. g. rD . This is a pre-
requisite before we explore causality relations between the extracted compo-
nents of rS  and rD . There needs to be consistent frequency correspondence 
between the respective components of rS  and rD , i. e. they should offer informa-
tion about the same period of time. For example, if the 1st IMF of rS  has a fre-
quency content of 2 to 4 months then the same should hold for the 1st IMF of 

rD . Things are complicated with respect to the frequency content of the IMFs. 

9  The BDS test results are available upon request.
10  The MATLAB code for the EMD decomposition is based on the code available at 

http: /  / perso.ens-lyon.fr / patrick.flandrin / emd.html.
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EMD is an algorithmic procedure and there is no a priori any form of restriction 
on the IMFs frequency band. By construction, we can guarantee that each IMF 
corresponds to a lower frequency from its previous only locally. The frequency 
content of the IMFs depends on the type of signal we are decomposing as well 
as on the specific characteristics of the EMD algorithm used each time. Flandrin 
et al. (2004) observed that for Gaussian signals, the functions derived through 
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EMD are similar to that from the DWT. The first IMF appears to be an output 
of a high-pass filter, whereas the rest are outputs of band-pass filters, each cov-
ering a different frequency band. Furthermore, Flandrin et al. (2005) reach the 
same conclusion, that is, the two methods work in a similar fashion for station-
ary signals with wide frequency content. 

Since there is no formal way to prove mathematically that the frequency con-
tent of the produced IMFs will form consistent and continuous frequent content 
areas, it is necessary to measure their frequency content via the Fourier Trans-
form. After the implementation of the EMD algorithm, each series is decom-
posed into 6 valid IMFs. In order to explore the frequency content of the EMD 
components for rS  and rD , we use the Welch spectral estimation with a Kaiser 
window of 64 points (Hayes, 1996). These are shown in Figures 7 and 8. We ob-
serve that although the frequency content of each component is relative band-
pass, there is strong “leakage” between successive frequency bands. Thus,there 
is mixed frequency content between neighbouring IMFs and naturally causality 
inference may be misleading. 

We gather that, instead of using each IMF separately, we utilise sums of neigh-
boring IMFs, in order to receive more meaningful and coherent frequency 
bands. In more detail, we chose to use: a) the sum of the first and the second 
IMF, b) the sum of the third and fourth IMF, and finally c) the sum of all the 
remaining IMFs. This implies that we are essentially grouping neighbouring 
(both in terms of frequency and order of extraction) IMFs. The same aggrega-
tion applies to both rS  and rD  series. The constructed time-series are depicted 
in Figures 9 and 10. In order to explore the frequency content of the aggregated 
EMD components for rS  and rD , we use the Welch spectral estimation with a 
Kaiser window of 64 points (Hayes, 1996). These are shown in Figures 11 and 
12. We observe that the frequency content of the created components is more 
well-defined with clearly lower “leakage”. Hence, the aggregated components 
will contain more consistent frequency (time-span) information, compared to 
the original components. 
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To validate and compare the analysis through the EMD components, we also 
perform the UWT decomposition on the VECM residual series, that is rS  and 

rD . The “Symlet 8” mother wavelet is selected for its symmetrical and accurate 
change localisation properties.11 In Figures 13 and 14, we depict the 5-level 
UWT decomposition carried out on the rS  and rD  series, respectively. Unlike 
previous decimated wavelet approaches, the undecimated property of the UWT 
approach ensures that the five extracted detail series as well as the approxima-
tion series are all of equal length to the input. This will enable us to come up 

11  We used MATLAB R2012b Wavelet Toolbox for this decomposition.
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with a better time correspondence and accuracy between the components that 
we intend to analyze further. As expected, the detail components contain higher 
fluctuations compared to the approximation component. As we descend into the 
wavelet decomposition, detail components tend to be smoother, i. e. contain 
lower frequencies. 
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For the UWT approach, the same frequency content prerequisite is satisfied 
by the properties of the transform. Provided that the frequency bands of the 
outputs are increased in a dyadic manner as well as the fact that we use the same 
sampling frequency along with the same level of decomposition for our signals, 
the frequency bands in each level of decomposition will be the same. Specifical-
ly, given that our sampling frequency is 1 month, according to Nyquist sampling 
theorem (Nyquist, 1928); the smaller observable frequency will be 2 months, 
implying that the level one detail signal will have a frequency band of 2 to 4 
months. Given the dyadic increase in the frequency content, it comes that the 
level two detail will contain frequencies in the 4 to 8 month band and so on. In 
Figures 15 and 16, we plot the frequency responses of the decomposition of rS  
and rD  respectively, as a function of frequency, expressed in months. The fre-
quency responses were estimated using the Welch method and a Kaiser window 
of 64 points (Hayes, 1996). It appears that the corresponding detail and approx-
imation components of rS  and rD  have similar frequency range. Nonetheless, we 
should devise a method to create components of similar frequency content to 
the aggregates created by the IMF components. 

After we measure the frequency content of the IMF sums, we observe that 
their frequency bands increase in a triadic manner. Consequently, the first sum 
illustrates a frequency content of 2 to 8 months, the second sum illustrates a fre-
quency content of 8 to 32 months, and the final sum illustrates a frequency con-
tent above 32 months. Under these circumstances, it is possible to create UWT 
aggregates with approximately the same frequency bands as those obtained 
through the EMDmethod, thus allowing a direct comparison between the two 
methods. The corresponding UWT sums are: the sum of the 1st and the 2nd de-
tail, the sum of 3rd and the 4th detail and finally the sum of the 5th detail with 
the approximation. These sums of UWT components are shown in Figures 17 
and 18 for the rS  and rD  series, respectively. Their frequency response is esti-
mated by the Welch spectral estimation technique and is depicted in Figures 19 
and 20. 
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In order to demonstrate that the new components, created from grouping of 
previous components satisfy the necessary conditions, we estimate the percent-
age of their power that correspond into the desirable frequency band. The spec-
tral power of a discrete signal ( )x t , under a discrete Fourier Transform ( )X ω , 
can be approximated generally by the following formula: 

(9)	
2

( ) ( ) ( )i t
x

t
P T x t e TX Xω ω ω

+¥
*

=-¥

D =Då
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            Figure 17: UWT Sums ( rS )                              Figure 18: UWT Sums ( rD )
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where TD  is the sampling period and ( )X ω*  the conjugate of ( )X ω . The re-
sults are summarised in Table 1. The calculated signal power for the new com-
ponents varies between 79.7 % and 98.5 %. This denotes that these components 
have their energy greatly concentrated in the frequency range they represent. 
Hence, these decompositions can be employed to explore predictability in these 
three time periods (2 to 8 m., 8 to 32 m., >  32 m.). 

2.  Predictability Testing at Alternative Horizons

Once, the spectral coherence between the extracted components of rS  and rD , 
via both UWT and EMD methods, has been satisfied, the non-linear predictive 
content of D with respect to S  is tested by conducting two tests proposed by 
Hiemstra and Jones (1994) (H&J, hereafter) and Diks and Panchenko (2006) 
(D&P, hereafter). The predictability testing is performed on the respective 
three created components of rD  and rS , components that encompass the same 
frequency content. The non-linear causality tests (H&J and D&P) illustrated in 
Tables 2 and 3, are executed for eight different lags ( x y=  i=  with i  ranging 
from 1 to 8). The subscripts used in the causality inference column represent 
the dominant significance / insignificance causality inference. In particular, the 
subscripts show the number of the calculated p-values (out of 8 in total) that 
belong to the indicated causality inference symbol. For example, **(7 / 8) im-
plies that 7 out of the 8 calculated p-values point out significance at the 5 % 
level, with the remaining p-values (1 in our example) to be higher or lower. 
Finally, the p-value range column shows for those p-values that belong to the 
dominant significance / insignificance predictability inference (7 in the previous 
example), the range of their values (max-min). In the previous example, if a 
p-value range equals to 0 015. -0 036. , implies that the 7 p-values belonging to 
the dominant set of the 5 % significance level, receive values that vary from 
0 015.  up to 0 036. . 

Additionally, for simplicity as well as for presentation purposes, each and 
every extracted component of the rS  and rD  series is signified by a composite 
subscript. The first part of the subscript implies the method used for the decom-
position (se for the EMD sums and su for the UWT sums), while the second part 
implies the decomposed component that corresponds to a distinct frequency 
content and therefore to a distinct time period (the second part ranges from c1 
to c3 for both the EMD sums method and the UWT sums method). For in-
stance, the notation 1su_cS  refers to the first extracted component (c1) for the rS  
series using the UWT sums method (su). All the extracted components for both 
time series, rS  and rD , along with the corresponding time length and the asso-
ciated power are analytically presented in Table 1. 
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Table 1
The Power of the Extracted Components for the UWT and EMD Methods

decomposition  
method 

corresponding 
time frame

components 
for S 

signal  
power 

components 
for D 

signal  
power

EMD sums
2 to 8 m. 

8 to 32 m. 
> 32 m.

Se_c1 
Se_c2 
Se_c3

90.1 % 
79.7 % 
94.5 % 

De_c1 
De_c2 
De_c3

91.6 % 
84.7 % 
92.1 %

UWT sums 
2 to 8 m. 

8 to 32 m. 
> 32 m. 

Ssu_c1 
Ssu_c2 
Ssu_c3 

97.6 % 
87.5 % 
91.3 % 

Dsu_c1 
Dsu_c2 
Dsu_c3 

96.6 % 
85.5 % 
98.5 % 

Notes: EMD sums and UWT sums denote the sums of the Empirical Mode Decomposition method and the sums 
of the Undecimated Wavelet Transform method, respectively. 

The results of both causality tests conducted on the respective pairs of signals 
for rS  and rD , produced by the EMD method are illustrated in Table 2. In more 
detail, the majority of both tests fail to reject the null hypothesis of no predicta-
bility for the short-run (c1 – 2 to 8 months) and the medium-run (c2 – 8 to 32 
months) components for the series of interest. Though, this is not the case for 
the long-run component (c3 – above 32 months). In the long-run, D appears to 
non-linearly Granger cause S  at the 0.05 significance level for both tests H&J 
and D&P. 

Table 2
Non-linear Predictability of S Under the EMD Sums Method

Causality 
direction

H&J test D&P test 

p – values range inference p – values range inference 

Dse_c1 → Sse_c1 0.128–0.250 ∉(5 / 8) 0.173–0.248 ∉(5 / 8) 

Dse_c2 → Sse_c2 0.139–0.817 ∉(7 / 8) 0.132–0.797 ∉(7 / 8) 

Dse_c3 → Sse_c3 0.011–0.016 **(4 / 8) 0.012–0.020 **(8 / 8) 

Notes: The arrow (→) denotes that the tested predictability runs from the left-hand side variable to the right-hand 
side variable. The symbols *, ** and *** denote existence of causality at the 10 %, 5 % and 1 % significance level, 
respectively. The symbol (∉) signifies no causality at the conventional levels of significance. The analytical results 
for each lag are presented in the Appendix A.1 (see Table 4). 

Finally, in the case where the testing procedure is reapplied into the sums of 
UWT, where the aggregated signals contain the same frequency content as the 
derived IMFs after the EMD decomposition, the resulting causal inference is 
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qualitatively similar to that of the EMD method (see Table 3). The revealed in-
ference suggests that for the short-run (c1 – 2 to 8 months) as well as for medi-
um-run (c2 – 8 to 32 months) frequency components, we clearly fail to reject 
the null hypothesis of no-causality at the conventional levels of significance. In-
terestingly, it appears that both tests support, at the 0.05 significance level, the 
non-linear predictability of real stock prices through real dividends for the long-
run extracted components (c3 – above 32 months). A clear conclusion after the 
comparison of the two alternative time-frequency decomposition methods, 
UWT and EMD, is that a non-linear predictability of S  through D can be af-
firmed at long-horizons. 

Table 3
Non-linear Predictability for the UWT Sums Components

Causality 
direction

H&J test D&P test 

p – values range inference p – values range inference 

Dsu_c1 → Ssu_c1 0.441–0.909 ∉(8 / 8) 0.430–0.917 ∉(8 / 8) 

Dsu_c2 → Ssu_c2 0.380–0.762 ∉(8 / 8) 0.197–0.699 ∉(8 / 8) 

Dsu_c3 → Ssu_c3 0.012–0.027 **(4 / 8) 0.012–0.021 **(4 / 8) 

Notes: The arrow (→) denotes that the tested predictability runs from the left-hand side variable to the right-hand 
side variable. The symbols *, ** and *** denote existence of causality at the 10 %, 5 % and 1 % significance level, 
respectively. The symbol (∉) signifies no causality at the conventional levels of significance. The analytical results 
for each lag are presented in the Appendix A.1 (see Table 5).

Overall, our findings (as these are summarized in Tables 2 and 3) support the 
long-run predictability of stock returns based on dividends and are in accord-
ance with other studies (see Campbell and Shiller, 1998; Rapach and Wohar, 
2005). In contrast to Rapach and Wohar (2005), who verify predictability at ho-
rizons spanning from six to ten years, our analysis using a different methodo-
logical framework finds that predictability appears after the first 2.7 years. The 
observed differences in the identified forecasting horizons may be attributed to 
several reasons. For example, one such reason may be the adopted methodolog-
ical framework, when that it does not consider the presence of non-linear fea-
tures in the data. Our study by relying on the joint use of signal processing 
methods along with non-linear and non-parametric techniques, allows us to 
identify possible non-linear linkages between stock prices and dividends at dif-
ferent horizons. Our findings support further the usage of non-linear specifica-
tions when it comes to testing the validity of the “new fact in finance” hypothe-
sis. 
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V.  Summary and Conclusions

The use of long-horizon regression equations consists the major workhorse 
when stock prices’ predictability comes as an empirical question (Wu and Hu, 
2012). In light of this, this study re-examines the Cochrane’s (1999) “new fact in 
finance” hypothesis under an alternative methodological framework not previ-
ously used in a suchlike research inquiry. On condition that the identified 
long-horizon predictability of S  is attributed to the presence of non-linearities 
underlying the data, we work inthe time-frequency domain and we adopt a 
non-linear predictability framework. Acting so, we are in a position not only to 
disentangle the series (S  and D) in frequency components which correspond to 
different distinct horizons, but also to gain insightful knowledge with respect to 
the nature of the predictive content encompassed in the D series with respect to 
the S  series. 

Using Shiller’s (1998) extended dataset on real stock prices and real dividends 
for the US economy, spanning from 1891:1 to 2013:2 (monthly frequency), and 
after an appropriate linear filtering (using a VECM specification), we decom-
pose the series into signals that correspond to dissimilar frequency bands. The 
decomposition is carried out via two methods frequently implemented in the 
digital signal processing analysis, that is the Empirical Mode Decomposition 
(EMD) and the Undecimated Wavelet Transform (UWT). Once the decomposi-
tions are accomplished, the existence of a non-linear predictability for S , at 
short- and long-horizons, is ascertained. When the two different decomposition 
methods are compared, our findings confirm the “new fact in finance” hypoth-
esis by identifying a significant non-linear predictability for S , at long-horizons. 
In particular, the null hypothesis of no predictability is rejected at the 0.05 sig-
nificance level, when the investigated horizons expand beyond 32 months. On 
the contrary, for frequencies below 32 months, there is a systematic failure to 
reject the null hypothesis. 

This paper’s contribution is twofold. First, we confirm the “new fact in fi-
nance” hypothesis under a different not previously implemented methodologi-
cal framework. Second, we provide evidence that the observed pattern in stock 
prices predictability (long-horizon predictability) is mainly attributed to the in-
herent non-linear structure of the data. Our results are suggestive towards the 
adoption of a non-linear framework when the stock prices’ predictability at 
long-horizons is examined. Finally, future empirical research may provide addi-
tional evidence towards the validity of the “new fact in finance” hypothesis by 
focusing on the predictive capacity of the valuation ratios, such as the divi-
dend-price ratio or the earnings-price ratio. 

Furthermore, apart from the adoption of a non-linear methodological frame-
work, another appealing direction that worth special investigation is the robust-
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ness of the “new fact in finance” hypothesis, not only in different markets but 
also over-time. In other words, it would be interesting to investigate whether 
stock price predictability has increased over the most recent years or vice versa. 
The detection of regimes in which the predictive content of dividends (or other 
valuation ratios) against the realstock prices is altering (reduces, increases or 
even disappears), may lead to a significant and valuable inferences. A natural 
approach of analysis, to shed some light on the above question, is each adopted 
methodology to be conducted on a rolling basis using sample windows with 
several lengths. This way, potential shifts in the predictive content may be iden-
tified, and new inferences may be accomplished. 
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Appendix A.1

Table 4
Non-linear Predictability of S Under the EMD Sums Method (All Lags)

Causality 
direction

H&J test D&P test 

lag p – value inference lag p – values inference 

Dse_c1 → Sse_c1

1 0.069 * 1 0.067 * 
2 0.013 ** 2 0.019 ** 
3 0.064 * 3 0.081 * 
4 0.128 ∉ 4 0.173 ∉ 
5 0.171 ∉ 5 0.227 ∉ 
6 0.147 ∉ 6 0.188 ∉ 
7 0.228 ∉ 7 0.258 ∉ 
8 0.250 ∉ 8 0.248 ∉ 

Dse_c2 → Sse_c2

1 0.029 ** 1 0.031 ** 
2 0.139 ∉ 2 0.132 ∉ 
3 0.458 ∉ 3 0.434 ∉ 
4 0.716 ∉ 4 0.721 ∉ 
5 0.707 ∉ 5 0.700 ∉ 
6 0.761 ∉ 6 0.731 ∉ 
7 0.802 ∉ 7 0.779 ∉ 
8 0.817 ∉ 8 0.797 ∉ 
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Causality 
direction

H&J test D&P test 

lag p – value inference lag p – values inference 

Dse_c3 → Sse_c3 1 0.012 ** 1 0.020 ** 
2 0.011 ** 2 0.017 ** 
3 0.001 *** 3 0.013 ** 
4 0.001 *** 4 0.013 ** 
5 0.001 *** 5 0.012 ** 
6 0.001 *** 6 0.012 ** 
7 0.011 ** 7 0.013 ** 
8 0.016 ** 8 0.017 ** 

Notes: The arrow (→) denotes that the tested predictability runs from the left-hand side variable to the right-hand 
side variable. The symbols *, ** and *** denote existence of causality at the 10 %, 5 % and 1 % significance level, 
respectively. The symbol (∉) signifies no causality at the conventional levels of significance. 

Table 5
Non-linear Predictability for the UWT Sums Components (All Lags)

Causality 
direction

H&J test D&P test 

lag p – value inference lag p – values inference 

Dsu_c1 → Ssu_c1

1 0.909 ∉ 1 0.917 ∉ 
2 0.854 ∉ 2 0.844 ∉
3 0.725 ∉ 3 0.704 ∉
4 0.695 ∉ 4 0.698 ∉ 
5 0.533 ∉ 5 0.526 ∉ 
6 0.490 ∉ 6 0.491 ∉ 
7 0.441 ∉ 7 0.446 ∉ 
8 0.448 ∉ 8 0.430 ∉ 

Dsu_c2 → Ssu_c2

1 0.689 ∉ 1 0.597 ∉ 
2 0.762 ∉ 2 0.699 ∉ 
3 0.361 ∉ 3 0.246 ∉ 
4 0.304 ∉ 4 0.197 ∉ 
5 0.408 ∉ 5 0.303 ∉ 
6 0.380 ∉ 6 0.295 ∉ 
7 0.385 ∉ 7 0.308 ∉ 
8 0.472 ∉ 8 0.355 ∉ 

(Continue next page)
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Causality 
direction

H&J test D&P test 

lag p – value inference lag p – values inference 

Dsu_c3 → Ssu_c3 1 0.027 ** 1 0.021 ** 
2 0.022 ** 2 0.018 ** 
3 0.017 ** 3 0.017 ** 
4 0.012 ** 4 0.012 ** 
5 0.009 *** 5 0.009 *** 
6 0.007 *** 6 0.007 *** 
7 0.005 *** 7 0.008 *** 
8 0.004 *** 8 0.007 *** 

Notes: The arrow (→) denotes that the tested predictability runs from the left-hand side variable to the right-hand 
side variable. The symbols *, ** and *** denote existence of causality at the 10 %, 5 % and 1 % significance level, 
respectively. The symbol (∉) signifies no causality at the conventional levels of significance. 

Appendix A.2

Non-linear Causality

The theoretical underpinnings of the non-linear causality test proposed by Diks and 
Panchenko (2006) (D&P, hereafter) can be traced back to the work of Hiemstra and Jones 
(1994). D&P pointed out that the test statistic suggested by Hiemstra and Jones (1994) 
tends to over-reject the null hypothesis when this is actually true. D&P, to remedy the 
observed inconsistency, introduce a modified statistic, to reduce the risk of over-rejecting 
the null. To illustrate the D&P testing procedure we introduce two delay vectors lD

tD  and 
lS
tS , with ( )l

l 1
D

t tt DD D- += ,...,D , ( )l
l 1

S
St t tS S- += ,...,S , and D lS 1l , ³ . Under the above-in-

troduced notation the standard Granger non-causality hypothesis running from tD  to tS  
is stated as: 

(10)	 l ll
1 1

S SD
t tt t tS Sæ ö÷ç ÷ç ÷÷+ +çè ø;D S S

Assuming that tD  and tS  are strictly stationary and weakly dependent, the non-causal-
ity hypothesis is a statement about the invariant distribution of the ( )D lS 1l + + -dimension-
al vector ll SD

t tt t Zæ ö÷ç ÷ç ÷÷çè ø= , ,w D S , with 1t tZ S += .12 Therefore, the validity of Eq. (10) implies 
that the conditional distribution of Z  given ( ) ( )D S d s, = ,  is equivalent to Z  provided that 
S s= . Given the null hypothesis, the joint probability density function ( )D S Z d s zφ , , , , , 
along with its marginals, should satisfy: 

12  Up to this point as a common presentation practice, the time subscript is dropped 
and we set 1D Sl l= = .

Table 5 (continued)
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(11)	
( )
( )

( )
( )

( )
( )

D S Z D S S Z

S S S

d s z d s s z
s s s

φ φ φ
φ φ φ

, , , ,, , , ,
=

Eq. (11) suggests that D  and S  are two independent variables that are conditional on 
S s=  for every fixed value of s . The restated null hypothesis suggested by D&P implies 
that: 

(12)	 ( ) ( ) ( ) ( ) 0D S Z S D S S Zq E d s z s d s s zφ φ φ φ, , , ,
é ùº , , - , , =ê úë û

Moreover, let us denote as ( )ˆ iWφ w  the local density estimator of the vector w  at iw , 
provided by ( ) ( ) ( ) 1ˆ 2 1dW W

i n ijW j j i
Inθφ

- -

, ¹
= - åw , where ( )W

i jijI I W W θ= - £ , ()I ×  to 
be the indicator function and, finally, nθ  the bandwidth which depends on the sample 
size n. The ( )ˆ iWφ w  estimator allowed D&P to propose the subsequent test statistic which 
is actually the sample version of Eq. (12): 

(13)	 ( )
( )
( )

( ) ( ) ( ) ( )
1 ˆ ˆ ˆ ˆ
2n n i i i i i i i iD S Z S D S S Z

i

n
T D Z S S F S S Z

n n
θ φ φ φ φ

æ ö÷ç ÷ç ÷ç ÷÷ç , , , ,è ø

-
= , , - , ,

- å

D&P showed that if n Cn βθ -=  with 0C >  and 14 13β< < , then (n nT ft θ£  con-
verges to the standard normal distribution: 

(14)	
( )( )

(0 1)n n D

n

T q
n N

S
θ -

¾¾® ,

where nS  is the estimated standard error of ()nT × . Summing up, the D&P approach mini-
mizes the risk of over-rejecting the null hypothesis with respect to the testing approach 
suggested by Hiemstra and Jones (1994). 
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