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Mandelbrot and the Smile

By Thorsten Lehnert, Maastricht*

I. Introduction

There is extensive empirical evidence that observed market prices of
traded options systematically differ from Black-Scholes prices. Out-of-
the-money calls and puts are relatively overpriced compared to at-the-
money options. A fact that is often represented by the well-known vola-
tility smile ‘implied out’ from observed option prices. For index options,
the smile is skewed towards out-of-the money puts. As a result, the im-
plied risk-neutral density function is leptokurtic and heavily skewed to
the left. The difference between the actual return distribution of the un-
derlying and the risk-neutral distribution implied out from option prices
can only be explained by extremely high levels of risk aversion. Market
participants seem to overestimate the probability of extreme downward
movements and are willing to purchase overpriced out-of-the money put
options.

At the empirical level, several studies have shown that option valua-
tion models with conditional heteroskedasticity and negative correlation
between volatility and spot returns capture the particular pattern and
significantly improve upon the performance of the Black-Scholes model.
The discrete-time GARCH option pricing model has shown to be a flex-
ible, empirically successful model (see among others Heynen, et al. (1994),
Duan (1996), Heston/Nandi (2000), and Ritchken/Trevor (1999)). Re-
cently, an increasing number of numerical methods for this class of
option pricing models become available (see Hanke (1997), Ritchken/
Trevor (1999), Duan/Simonato (1998), Duan et al. (2001), and Heston/
Nandi (2000)). Heston/Nandi (2000) developed a closed form solution of a
GARCH option-pricing model. They show that the single lag version
of their model contains Heston’s (1993) model as a continuous-time
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limit, but the discrete-time counterpart is much easier to apply with
available data.

However, despite the rather sophisticated modeling approach, a Gaus-
sian model cannot adequately account for the particular pattern ob-
served in option prices. Using the generalized GARCH option-pricing
framework of Duan (1999), Lehnert (2003) showed that conditional lepto-
kurtosis and skewness reinforces the effects of conditional heteroskedas-
ticity and asymmetry in the volatility process. His GARCH option pricing
model driven by skewed generalized error distributed innovations out-
performs the closed-form GARCH option pricing model of Heston/Nandi
in-sample as well as out-of-sample. The improvements in pricing errors
are particularly pronounced for out-of-the money put and call options,
while the model partly underperforms the Gaussian model for near-the-
money options. The results are partly in line with recent results obtained
by Christoffersen et al. (2006). They developed and empirically test a
GARCH option pricing model with conditional skewness. While they
demonstrate the importance of conditional skewness and jumps for the
pricing of out-of-the-money puts, their closed-form Inverse Gaussian
GARCH option pricing model significantly underperforms a standard
Gaussian model for several other types of options. In contrast to Lehnert
(2003), Christoffersen et al. (2006) conclude that the overall pricing per-
formance is inferior to the standard Gaussian model. Therefore, the em-
pirical evidence does not necessarily suggest that modeling jumps in re-
turns and volatility in addition to stochastic volatility is the appropriate
approach for the purpose of option valuation.

In this paper, I argue that most is to be gained by modeling deviations
from normality. In order to investigate the research question further, I
empirically investigate whether the use of a more flexible innovations
distribution is able to improve the performance for out-of-the-money op-
tions without worsening the performance for near-the-money options. A
possible candidate might be the truncated Lévy distribution often stu-
died in physics. Mandelbrot (1963) first proposed the idea that price
changes are distributed according to a Lévy stable law. This model was
frequently criticized, because the tails are now too fat from a financial
modeling perspective and the infinite variance makes it impossible to ap-
ply the Central Limit Theorem. The problems with these kinds of distri-
butions are the power law tails, which decay too slowly. This problem
can be overcome by taking the Lévy distribution in the central part and
introducing a cutoff in the far tails that is faster than the Lévy power
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law tails. The Lévy distribution with a cutoff and exponentially declining
tails was introduced in the physics literature by Mantegna/Stanley
(1994) and is known as a truncated Lévy distribution. The exponential
decay in the tails ensures that all relevant moments are finite.

At the empirical level, Lehnert/Wolff (2004) show that this approach
has some advantages: using the truncated Lévy flight for the innovations
of a GARCH process, one is able to capture the observed conditional tail
fatness and skewness in financial return data. For the US and UK mar-
ket, their back-testing results suggest that the inclusion of more sophisti-
cated tail properties improves the performance of a Value-at-Risk model
significantly, for short and long time horizons. Additionally, they show
that the in-sample fit as well as the out-of-sample forecasting perform-
ance of their VaR model is superior to a GARCH model driven by skewed
Student-t innovations.

In this paper, I compare a truncated Lévy GARCH option pricing
model with two benchmarks: a standard nested Gaussian alternative spe-
cification and the ad-hoc Black-Scholes model of Dumas/Fleming/Wha-
ley (1998) (DFW) and conclude which method is superior in describing
the observed market smile in DAX index options. The paper is arranged
as follows. Section II describes the GARCH option-pricing framework.
Section IIT discusses the data and methodology. In Section IV, I provide
the empirical results and finally Section V concludes.

II. Econometric Framework
1. Option Pricing under GARCH
In a Gaussian discrete-time economy the value of the index at time ¢,

St, can be assumed to follow the following dynamics (see e.g. Duan
(1995)):

S
rt:1n<s ‘ )-i—dt:rf—&-/lot—&-atet

t—1
1) e | Q-1 ~ N(0,1) under probability measure P
ln(af) = wo + 0 111(0?71) + wz( lec 1] — ¥ et—l)
where d; is the dividend yield of the index portfolio, 7; is the risk-free

rate, 1 is the price of risk; Q; ; is the information set in period ¢t — 1 and
the combination of wy; and y captures the leverage effect.
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Duan (1995) shows that under the Local Risk Neutral Valuation Rela-
tionship (LRNVR) the conditional variance remains unchanged, but un-
der the pricing measure @ the conditional expectation of 7, is equal to
the risk free rate ry:

(2) E° [exp(n) \ Qt—l] = exp(ry)

Therefore, the LRNVR transforms the physical return process to a risk-
neutral dynamic. The risk-neutral Gaussian GARCH process reads:

1
=1y _EU? + Ot

(3) &|Q;_1 ~ N(0,1) under risk-neutralized probability measure @

In(0?) = wp + w1 1n(0? ) + wy(les 1 — A — ylec 1 —A))

1
where the term -5 o? gives additional control for the conditional mean.

In Equation (3), & is not necessarily normal, but to include the Black-
Scholes model as a special case we typically assume that ¢; is a Gaussian
random variable.

2. GARCH Option Pricing with Conditional Skewness
and Leptokurtosis

Lévy flights have been observed experimentally in physical systems
and have been used very successfully to describe for instance the spectral
random walk of a single molecule embedded in a solid. In all these cases
an unavoidable cutoff in the tails of the distribution is always present.
One possible cutoff is the exponential function, for which the character-
istic function (CF) of the so-called truncated Lévy distribution (TLD) has
been developed (Koponen (1995)). For financial data the cutoff region is
early in the tails, which ensures the finiteness of all relevant moments.
The standardized CF with location parameter equal to zero and scale
parameter c equal to one reads (Nakao (2000)):

Yrplk,a,o, ) = %cos <a arctan('?—‘))
1+ sgn(k) ftan <a arctan (%))]

where o is the characteristic exponent determining the shape of the dis-
tribution and especially the fatness of the tails (0 < a <2, but a # 1) and
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Gaussianws. Truncated Lévy Density

truncated Lévy densty — _ _ _Mormaldens fty

The graph depicts a comparison of a truncated Lévy density and a normal density. Both densities are standard-
ized, such that the scale parameter c is equal to one.

Figure 1: Truncated Lévy Density

0 is the cutoff parameter, which determines the speed of the decay in the
tails and as a result the cutoff region. The parameter (S € [-1,1]) deter-
mines the skewness when f # 0, the distribution is skewed to the right
when —1 < 8 < 0 and skewed to the left when 0 < 8 < 1. For 6 — +0 the
TLD reduces to the Lévy distribution and for 6 — 40, f=0and a =2
the TLD reduces to the Normal distribution with scale parameter c¢. For
comparison purposes, Figure 1 shows the density of a truncated Lévy
distribution with reasonable parameter values for financial return data
and the special case of a Gaussian density. Both densities are standard-
ized, such that the scale parameter c equals one. Accurate numerical
values for the density Ur,p can be calculated by Fourier-transforming
the CF and evaluating the integral numerically. I use Romberg integra-
tion, which allows ex-ante specification of the tolerated error and in fact
a calculation of the density as precise as necessary (see Lambert/Lindsey
(1999)).

The analogue of the standard deviation o in the family of Lévy distri-
butions is the scale parameter c. If I replace the standard deviation o by
the scale parameter ¢, I allow the conditional scale parameter c; to be se-
rially correlated and to vary over time. If e;, conditional on Q; ; is a
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skewed truncated Lévy distributed random variable, then the risk-neu-
tral GARCH process reads’:

e =17 — In(E?(exp(cm,) | Q1)) + o,

£|Q¢_1 ~ Npayy(u = 0,= 1) under risk-neutralized probability measure Q.
(5)
n,=TLD™* (¢Léuy(8t —4); u=0,c=1,a,9, ﬁ)

ln(cz) =Wy + w1 ln(cz71) +w2(|’7t—1‘ - V’?t—1) )

where Prévy L] stands for a standardized normal cumulative distribution
with zero mean and scale parameter ¢ equal to 1, TLD[.] stands for the
inverse skewed truncated Lévy cumulative distribution with standard-
ized mean equal to 0, scale parameter c equal to 1, tail parameter q,
skewness parameter S and 0 controls for the exponential decay in the
tails. The term E®(.|Q) gives additional control for the conditional mean
and can be evaluated numerically. The unconditional volatility level is

equal to\/exp<w° R f[(lozl )] )and can be evaluated numerically.
— w1

The parameter w; measures the persistence of the variance process.

A European call option with exercise price X and time to maturity T
has at time ¢ price equal to:

(6) ¢; = exp(—rT) EQ [max(S; — X,0)|Q; 1]

For this kind of derivative valuation models with a high degree of path
dependency, computationally demanding Monte Carlo simulations are
commonly used for valuing derivative securities. I use the recently pro-
posed simulation adjustment method, the empirical martingale simula-
tion (EMS) of Duan/Simonato (1998), which has been shown to substan-
tially accelerate the convergence of Monte Carlo price estimates and to
reduce the so called ‘simulation error’. Monte Carlo simulations are also
frequently and successfully used in various risk management applica-
tions (e.g. see Bams/Lehnert/Wolff (2005)).

3. An Alternative Option Valuation Approach
I compare both GARCH option-pricing models with the so-called prac-
titioners Black-Scholes model (see e.g. Dumas/Fleming/Whaley (1998) or

I See Lehnert (2003) for details regarding GARCH option pricing with condi-
tional leptokurtosis and skewness.
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Christoffersen/Jacobs (2004b)). I allow each option to have its own
Black-Scholes implied volatility depending on the exercise price X and
time to maturity T and use the following functional form for o:

(7) O = T + JTlMi -‘t‘ﬂsz;-z +.7T3T]' + JT4T]2 + 75 ZMZ'T]'7

where o0;; denotes the implied volatility and M; the ‘moneyness’, %, (Fj is
J
the forward price) of an option for the i-th exercise price and j-th matur-

ity. For every exercise price and maturity I can compute the implied
volatility and derive option prices using the Black-Scholes model.

Christoffersen/Jacobs (2004b) show that the importance of the loss
functions when estimating and evaluating option pricing models has
been frequently overlooked. However, the particular loss function used in
the empirical analysis characterizes the model specification under con-
sideration. Therefore, it is possible that a misspecified model outper-
forms a ‘correctly specified’ model when the ‘inappropriate’ loss function
is used. Recently, empirical researchers found evidence that the absolute
pricing error criterion is superior to other loss function and “may serve
as a general purpose loss function in option valuation applications”
(Christoffersen/Jacobs (2004b) and Bams et al. (2006)). Therefore, I cali-
brate the parameters of the various model by minimizing the average
root mean squared absolute pricing error between the market prices and
the theoretical option prices:

n My
RMSE = ! mind Y (é;-c¢j)’  or
Ncalls i=1j=1
(8)

n My

N 2

RMSE — min Y > (pi; - pij)
puts i=1j=1

where Neq s and Npy are the number of call or put options evaluated, the
subscript i refers to the n different maturities and subscript j to the m;
different strike prices in a particular maturity series i. Depending on the
moneyness of the option, put or call prices are used. Motivated by the ac-
tual trading volume, I use put prices for option with moneyness of less
than 1 and call prices for options with moneyness of more than 1.

As starting values for the calibration, I make use of the time-series es-
timates from the truncated Lévy GARCH model using approximately
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three years (752 trading days) of historical returns. Additionally, I use
the time-series parameter estimate of the price of risk parameter ¢ for
the option calibration (see e.g. Christoffersen/Jacobs (2004 a)).

III. Data and Methodology

I use daily closing DAX 30 index options and futures prices for a per-
iod from January 2000 until December 2000. The raw data set is directly
obtained from the EUREX, European Futures and Options Exchange.
The market for DAX index options and futures is the most active index
options and futures market in Europe. Therefore, it is a good market for
testing option-pricing models.

For index options the expiration months are the three nearest calendar
months, the three following months within the cycle March, June, Sep-
tember and December, as well as the two following months of the cycle
June, December. For index futures, the expiration months are the three
nearest calendar months within the cycle March, June, September and
December. The last trading day is the third Friday of the expiration
month, if that is an exchange trading day; otherwise on the exchange-
trading day immediately prior to that Friday.

I exclude options with less than one week and more than 25 weeks un-
til maturity and options with a price of less than 2 Euro to avoid liquid-
ity-related biases and because of less useful information on volatilities.
Among others DFW argue that options with absolute moneyness of more
than 10% are not actively traded and therefore contain no information
on volatilities. Therefore, an obvious solution is to filter the available
option prices and only include those options that are actively traded.
Therefore, instead of using a static rule and exclude options with abso-
lute moneyness |K/F-1| of more than 10% (see DFW), I exclude options
with a insufficient daily turnover (see Lehnert (2003)). In particular, in
volatile periods deep out-of-the money options are highly informative if
they are actively traded. As a result, each day I use a minimum of 3 and
a maximum of 4 different maturities for the calibration.

The DAX index calculation is based on the assumption that the cash
dividend payments are reinvested. Therefore, when calculating option
prices, theoretically I don’t have to adjust the index level for the fact
that the stock price drops on the ex-dividend date. But the cash dividend
payments are taxed and the reinvestment does not fully compensate for
the decrease in the stock price. Therefore, in the conversion from e.g. fu-
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tures prices to the implied spot rate, one observes empirically a different
implied dividend adjusted underlying for different maturities. For this
reason, I always work with the adjusted underlying index level implied
out from futures or option market prices.

In particular I'm using the following procedure for one particular day
to price options on the following trading day:

First, I compute the implied interest rates and implied dividend ad-
justed index rates from the observed put and call option prices. I'm using
a modified put-call parity regression proposed by Shimko (1993). The
put-call parity for European options reads:

(9) ¢ij—pij =[St — PV(Dy)] - Xie 1Y

where ¢;; and p;; are the observed call and put closing prices, respec-
tively, with exercise prices X; and maturity T; —t PV(D;) denotes the
present value of dividends to be paid from time ¢ until the maturity of
the options contract at time Tj and r; is the continuously compounded in-
terest rate that matches the maturity of the option contract. Therefore, I
can infer a value for the implied dividend adjusted index for different
maturities, S; — PV(D;), and the continuously compounded interest rate
for different maturities, r;. In order to ensure that the implied dividend
adjusted index value is a non-increasing function of the maturity of the
option, I occasionally adjust the standard put-call parity regression.
Therefore, I control and ensure that the value for S; — PV(D;) is decreas-
ing with maturity, Tj. Since I'm using closing prices for the estimation,
one alternative is to use implied index levels from DAX index futures
prices assuming that both markets are closely integrated.

Second, I estimate the parameters of the particular models by minimiz-
ing the loss function (8). Given reasonable starting values, I price Euro-
pean call options with exercise price X; and maturity Tj. Using well-
known optimization methods (e.g. Newton-Raphson method), I obtain
the parameter estimates that minimize the loss function. The goodness of
fit measure for the optimization is the mean squared valuation error
criterion.

Third, having estimated the parameters in-sample, I turn to out-of-
sample valuation performance and evaluate how well each day’s esti-
mated models value the traded options at the end of the following day. I
filter the available option prices according to our criteria for the in-sam-
ple calibration. The futures market is the most liquid market and the op-
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tions and the futures market are closely integrated, therefore it can also
be assumed that the futures price is more informative for option pricing
than just using the value of the index. For every observed futures closing
price I can derive the implied underlying index level and evaluate the
option. Given a futures price F; with time to maturity Tj spot futures
parity is used to determine S; — PV(D;) from

(10) S, — PV(D;) = Fjei%i

where PV(D;) denotes the present value of dividends to be paid from
time ¢t until the maturity of the options contract at time T; and 7; is the
continuously compounded interest rate (the interpolated EURIBOR rate)
that matches the maturity of the futures contract (or time to expiration
of the option). If a given option price observation corresponds to an op-
tion that expires at the time of delivery of a futures contract, then the
price of the futures contract can be used to determine the quantity
S — PV(D;) directly.

The maturities of DAX index options do not always correspond to the
delivery dates of the futures contracts. In particular for index options
the two following months are always expiration months, but not neces-
sarily a delivery month for the futures contract. When an option expires
on a date other than the delivery date of the futures contract, then the
quantity S; — PV(D;) is computed from various futures contracts. Let F;
be the futures price for a contract with the shortest maturity, T; and F;
and F3 are the futures prices for contracts with the second and third clo-
sest delivery months, T, and Ts, respectively. Then the expected future
rate of dividend payment d can be computed via spot-futures parity by:

r3T3 — 1, Ty —log (F3/F3)

a1 = (T3 — T»)

Hence, the quantity S; — PV(D) = S;e~%Tassociated with the option that
expires at time T in the future can be computed by?

(12) Ste—dT — Fle(—('rl—d)Tl—dT).

This method allows us to perfectly match the observed option price
and the underlying dividend adjusted spot rate. Given the parameter es-
timates and the implied dividend adjusted underlying I can calculate op-

2 See e.g. the appendix in Poteshman (2001) for details.
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tion prices and compare them to the observed option prices of traded in-
dex options. For the out-of-sample part the same loss functions for call
options are used. The prediction performance of the various models are
evaluated and compared by using the root mean squared valuation error
criterion. I compare the predicted option values with the observed prices
for every traded option. I repeat the whole procedure over the out-of-
sample period and conclude, which model minimizes the out-of-sample
pricing error.

IV. Empirical Results

In this section, I present estimation and evaluation results using 254
days of option data from the year 2000. Each trading day, on average 85
option prices are used for the calibration and evaluation of the models,
with a minimum of 62 and a maximum of 155. The numbers of option
contracts in the in-sample and out-of-sample data set are reported across
moneyness and maturity in Table 1.

In total more than 21400 option contracts have been evaluated. The
number contracts are nearly equally distributed over the five different
moneyness categories, except the fewer number options with moneyness
of less than 0.92. Most options are short term (< 21 trading days until
maturity) or long term (> 63 days until maturity), but there is also a sub-
stantial number options traded in the medium term.

All models are calibrated using the Euro root mean squared error loss
function (8). For the GARCH models, theoretical option prices are ob-
tained using (5), and the local scale parameter c;.; is estimated together
with the other parameters. I additionally use a time-series parameter es-
timate for the option calibration: the price of risk parameter 1. The joint
identification of A and y is possible but not reasonable, since both para-
meters control for asymmetry by modifying the news impact curve.

Table 2 shows the averages of daily parameter estimates of the three
models analyzed, obtained by minimizing the Euro pricing error, using
data for 253 trading days in the year 2000.

For the models that are investigated, estimating the parameters using a
single day of option prices is a convenient approach. The objective func-
tion is always well behaved and no numerical problems have been en-
countered. It is well-known fact that the parameters of the ad-hoc
Black-Scholes model can be significantly estimated, but substantially
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Table 2

Parameter Estimates

Ad-hoc Black-Scholes Gaussian Truncated Lévy
GARCH GARCH
Parameter Mean Parameter Mean Mean

7T 0.9027 on -0.2274 —0.1548
2] -1.0026 o 0.9713 0.9801
7Ty 0.3213 on 0.0925 0.0602
T3 -1.1039 y 0.6821 0.9781
Ty -0.1133 Cri1 0.0123 0.0124
5 0.2394 a 2 1.7211
0 0 0.2532

p 0 0.1987

Notes. The table presents the average parameters estimates of the daily estimations of the various models dur-
ing the period January 2000 until December 2000.

vary over time, already on a day-to-day basis. Similar results are ob-
tained for the particular option data set under investigation (results not
reported). For the GARCH option pricing models, parameter estimates
are obtained that are more stable and in line with the ones expected
from a time-series calibration. The value of 0.98 for w; suggests strong
mean reversion of the volatility process. The significant estimates for w,
and y suggest that the volatility process is asymmetric, meaning that re-
turns and volatility are negatively correlated and resulting in negative
skewness in the simulated multiperiod index returns. However, in the
case of the truncated Lévy GARCH option pricing model, this effect is
augmented by negative skewness in the innovations distribution. An
average value of ~ 0.2 for the skewness parameter  of the truncated
Lévy distribution suggests that this is indeed an important feature for
the pricing of DAX index option. Additionally, also the other parameter
estimates suggest that the data dictate a non-normal innovations distri-
bution: the tail fatness parameter « is different from 2 and the ‘cutoff’
parameter 0 is different from 0. A value of around 0.25 for J implies that
the exponential decay is introduced earlier in the tails, which rejects the
extremely fat-tailed Lévy distribution as a possible alternative. A value
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of 1.72 for the characteristic exponent a suggests that the empirical risk
neutral distribution is more peaked than a Lévy stable or a Gaussian.
The levels of the parameter estimates for the truncated Lévy distribution
are in line with what Lehnert/Wolff (2004) found for major stock market
indices.

The in-sample relative pricing errors are in the range of 1-2 Euros;
usually slightly smaller for the truncated Lévy GARCH option pricing
model (on average around € 1.5) and the ad-hoc Black-Scholes model (on
average around € 2) compared to the Gaussian GARCH option valuation
model (on average around € 2.2). Table 3 reports the results for the in-
sample pricing errors of the various models.

In general, the in-sample results are in line with the empirical findings
of Christoffersen et al. (2006) and Lehnert (2003): The more flexible inno-
vations structure improves the pricing performance of the GARCH op-
tion pricing model significantly. The results are consistent over different
levels of moneyness and for various maturities. As expected, the im-
provements in the pricing performance are very pronounced for deep
out-of-the-money put (deep-in-the-money call) options. It’s a well known
fact that the risk neutral distribution implied out from option prices ex-
hibit very pronounced left-skewness and leptokurtosis. Using the trun-
cated Lévy distribution for the innovation structure of a GARCH process
reinforces the effect of asymmetry in the volatility process and condi-
tional heteroskedasticity and produces left-skewness and leptokurtosis in
the multi-period return distribution. In an option pricing framework,
this leads to a reduction of the mispricing of out-of-the-money put op-
tions. Compared to the special case of the Gaussian model, the more flex-
ible innovation structure improves the pricing error by € 0.60. If we just
look at the short term out-of-the-money puts, the improvement is as
strong as € 1.50 over the ad-hoc Black-Scholes model. Additionally, the
truncated Lévy GARCH option pricing model shows the most homoge-
neous pricing results across all maturity and moneyness categories. The
good pricing performance of the GARCH model with conditional skew-
ness and leptokurtosis cannot be confirmed for the Gaussian alternative:
on average the model underperforms the ad-hoc Black-Scholes model.
The underperformance is evident across all maturity bins and across
nearly all moneyness bins. In general, all models show the largest pricing
errors for short term options with less than one trading month to expira-
tion. Because of the volatile sample period under consideration and the
corresponding pronounced skewness in the volatility smile, the mispring
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is most extreme for those options. The pricing error consistently im-
proves for longer maturities as well as for options with moneyness larger
than 1.04 (out-of-the-money calls).

However, it is a well-known fact that the ad-hoc Black-Scholes model
typically overfits the data in-sample, but when evaluated out-of-sample,
it typically underperforms GARCH-type option pricing approaches (Hes-
ton/Nandi (2000)). Additionally, Christoffersen et al. (2006) show that a
GARCH model with conditional skewness and jumps overfits the data
in-sample, but underperforms a Gaussian model when evaluated out-of-
sample. Therefore, we cannot rely on the in-sample results, but an out-
of-sample analysis has to be conducted.

The out-of-sample valuation errors are presented in Table 4. In gen-
eral, the results suggest that the deterioration in the model’s perform-
ances going from in-sample to out-of-sample is substantial. Pricing er-
rors increase from around 1.5-2 Euros to 5-6 Euros. However, and for
our analysis more importantly, results strongly suggest that the findings
of Christoffersen et al. (2006) cannot be confirmed for a more recent data
set of DAX options: the out-of-sample valuation errors of the truncated
Lévy GARCH model are on average lower compared to the Gaussian al-
ternative and the ad-hoc Black-Scholes model.

Christoffersen et al. (2006) conclude that the out-of-sample perform-
ance of their model is satisfactory for addressing an important problem
in option valuation, the valuation of out-of-the-money puts. However,
while their model fails out-of-sample along a number of other dimen-
sions, the truncated Lévy GARCH option pricing model is flexible
enough to outperform a Gaussian alternative in all dimensions. Christoffer-
sen et al. (2006) present empirical evidence that the pricing performance
of the GARCH model with skewness and jumps is inferior to the Gaus-
sian alternative especially for longer-term options. Nevertheless, it is re-
markable that also with the approach proposed in this study, the pricing
performance worsens for longer-term options, but deteriorates less and
remains superior compared to the Gaussian alternative. Again, our model
shows the most homogeneous pricing results across all maturity and
moneyness categories. In addition, the findings of Heston/Nandi (2000)
can be confirmed: the alternative Gaussian GARCH model outperforms
the ad-hoc Black-Scholes model out-of-sample. As expected, the alterna-
tive approach of modeling the scale parameter c instead of the variance
does not result in a different pricing performance of the Gaussian
GARCH option valuation model. One might conclude that the more flex-
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ible innovations structure of the truncated Lévy GARCH option pricing
model does not seem to overfit the data in-sample, but results in signifi-
cant valuation improvements for all types of options. Therefore, one
might argue that most is to be gained from modeling deviations from
normality, but less is to be gained from modeling jumps in returns and
volatility in addition to stochastic volatility. However, one result is in
particularly interesting: for all approaches the pricing performance dra-
matically worsens when the maturity of the option contract increases.
This is in line with the results of Christoffersen et al. (2006) and shows
that still not even the more sophisticated GARCH approach adequately
captures the volatility dynamics underlying option prices.

V. Conclusions

This paper presents a new option valuation model that is based on a
return dynamic that contains conditional skewness and leptokurtosis as
well as conditional heteroskedasticity and a leverage effect. The trun-
cated Lévy GARCH option pricing model nests a standard GARCH
model, which contains Gaussian innovations, and the empirical compari-
son between our new model and the standard GARCH model investigates
the importance of modeling conditional skewness and leptokurtosis. Our
empirical results are strongly in favor of the new modeling approach: the
truncated Lévy GARCH option pricing model achieves a better fit than
standard models in-sample and out-of-sample. The improvements in the
pricing performance are particularly pronounced for short-term deep
out-of-the-money puts, but it also performs better than standard models
for longer terms and for other types of options.
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Summary

Mandelbrot and the Smile

It is a well-documented empirical fact that index option prices systematically
differ from Black-Scholes prices. However, previous research provides inconclu-
sive results whether the observed volatility smile could be explained by a discrete-
time dynamic model of stock returns with skewed, leptokurtic innovations. The
improvements in pricing errors are particularly pronounced for out-of-the money
put options, while the models partly underperform a Gaussian alternative for
near-the-money options. Motivated by theses empirical evidence, I develop a new
GARCH option-pricing model with a more flexible innovation structure. In an ap-
plication of the model to DAX index options, I test the relative performance of the
approach against a standard nested GARCH specification and the well-known
practitioners Black-Scholes model. I show that the performance of the truncated
Lévy GARCH option pricing model is superior to existing approaches. (JEL G12)
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Zusammenfassung

Mandelbrot und das Lacheln

Es ist eine wohldokumentierte empirische Tatsache, dass sich die Kurse von in-
dexbasierten Optionen systematisch von den Black-Scholes-Kursen unterscheiden.
Jedoch liefert die bisherige Forschung keine schliissige Antwort auf die Frage, ob
sich das beobachtete ,Volatilitatsldacheln“ durch ein diskretes zeitdynamisches
Modell fiir Aktienrenditen mit schiefen, leptokurtischen Innovationen erkléren
lasst. Berichtigungen von Kursberechnungsfehlern sind besonders augenfillig bei
Putoptionen, die aus dem Geld sind, wobei die Modelle eine zum Teil schlechtere
Leistung zeigen als die Gaufy’sche Alternative fiir Optionen in Geldndhe. Durch
diese empirischen Beweise motiviert, entwickele ich ein neues GARCH-Modell fiir
Optionskurse mit einer flexibleren Innovationsstruktur. Ich wende dieses Modell
auf DAX-basierte Optionen an und priife die relative Performance dieses Ansatzes
auf dem Hintergrund einer GARCH-Spezifikation in Standardschachtelung und
des wohlbekannten Black-Scholes-Modells fiir Praktiker. Ich zeige, dass die Per-
formance des bisher unbewiesenen Lévy-GARCH-Modells fiir Optionskurse den
bestehenden Ansitzen tiberlegen ist.
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