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I. Introduction

Banks' internal rating systems have gained considerable importance in
recent years. This is due to regulatory pressure imposed by the new
Basel II framework, and to economic reasons such as the imperative of
managing a credit portfolio according to the principles of economic capi-
tal or risk adequate pricing. Given the increased significance of internal
rating systems, banks and regulatory authorities are becoming more and
more interested in assessing their quality. In other words, banks must
frequently review their rating systems, a process which is referred to as
ªvalidationº. According to Deutsche Bundesbank (2003), the quantitative
validation of rating systems can be separated into an assessment of two
of their attributes: their discriminatory power, which denotes their abil-
ity to discriminate ex ante between defaulting and non-defaulting debt-
ors; and the accuracy of their calibration, which is high if the estimated
probabilities of default (PD) deviate only slightly from the observed de-
fault rates.1 The maximization of the discriminatory power is guaranteed
by the bank's own economic incentives, since otherwise risk inadequate
pricing occurs. Incorrect calibration on the other hand, which means as-
signing too low PDs, would lead to lower regulatory equity require-
ments.2 Therefore, banking regulatory authorities concentrate on calibra-
tion. In testing the quality of calibration, the default correlation plays a
decisive role. In this paper we present four approaches to testing the
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1 As a third criterion, the discriminatory power should be stable over time.
2 Of course, assigning too high probabilities of default would lead to higher reg-

ulatory equity requirements. We regard this as the less realistic and impacting
case.
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quality of calibration of internal rating systems with (positive) default
correlations. We extend the existing literature since this paper is the
first to compare these approaches.

We find that multi-factor models generate more precise results through
lower upper bound default rates and narrower confidence intervals. For
confidence levels of 95%, the approximation approaches overestimate
the upper bound default rates. For asset correlation of less than 0.5%,
the granularity adjustment approach does not deliver reasonable results.
For low numbers of debtors in a given rating class (or credit portfolio),
the approximation approaches sharply overestimate the upper bound de-
fault rates. Using empirical inter-factor correlations we find that confi-
dence intervals of two-factor models are much tighter compared with the
one-factor model.

The study is organized as follows. Section II. provides a brief review of
the literature. The following section presents four different approaches
in the case of dependent default events. First, a one-factor simulation
approach for default probabilities is demonstrated. Then, two approxi-
mation approaches to determining confidence intervals analytically are
described: the granularity adjustment approach and the moment match-
ing approach. Fourth, a multi-factor model for calculating confidence in-
tervals is shown. Section IV. presents a comparative analysis of the four
methods. Section V. provides a test for a two-factor model with hetero-
geneous default correlations. The last section summarizes.

II. Literature Review

Common factor models used in practice are CreditMetricsTM (Gupton,
Finger and Bhatia (1997)), CreditRisk+TM (CSFB (1997)), PortfolioMan-
agerTM (Crosbie and Bohn (2003), and McQuown (1993)), CreditPortfolio-
ViewTM (Wilson (1998)), and the model used for the calculation of the
minimum capital requirements according to Basel II (BCBS (2004)).3 The
first credit risk models were introduced by Merton (1974) and Black and
Scholes (1973). Among others, Black and Cox (1976), Geske (1977), as
well as Longstaff and Schwartz (1995) advance the basic asset value
model that assumes a default event to occur if the value of an obligor's
assets falls below the value of its liabilities. Vasicek (1997) introduces a
one-factor model based on the previous research, which incited many
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authors to extend the model structure. Tasche (2003) recommends a traf-
fic lights approach incorporating extensions of Vasicek's one-factor
model. To test the quality of calibration given a certain correlation of
defaults, he calculates confidence intervals for the number of defaulting
firms using two approximation approaches, since no closed solution is
available. He compares the results to upper bound default rates calcu-
lated with a binomial test (assuming independent default events). Bloch-
witz, Wehn, and Hohl (2005) further extend Tasche's approach by incor-
porating correlation over time and correlation between several rating
grades into the model. Further studies focusing on the approximation
approaches are Gordy (2003), Martin and Wilde (2002), GouriØroux,
Laurent, and Scaillet (2000), and Rau-Bredow (2002).

A different line of the literature focuses on the importance of the incor-
poration of macroeconomic factors on PD estimation. Helwege and Klei-
man (1996) and Alessandrini (1999) show that default rates depend on
the phase of the business cycle, i. e. defaults are more likely in economic
downturns than in economic booms. Nickell, Perraudin and Varotto
(2000) present a probit model for the estimation of rating transition
probabilities considering macroeconomic factors such as the industry, the
business cycle, and the country of establishment. Hamerle, Liebig and
Scheule (2004) derive factor models for the PD estimation which include
positive default correlations. As a result of empirical analyses of more
than 50,000 German firms they find that the incorporation of macroeco-
nomic factors improves the forecasts of default probabilities. They also
show that default rates can be forecasted by including those factors. A
factor model presented in this context allows the forecasting of PDs for
individual debtors by considering their dependency structures. Huschens
and Stahl (2005) propose a test framework for general factor models
(although they only present Vasicek's one-factor model). They indicate
that the assumption of independent default events, e.g. zero correlation,
as well as assuming too high asset correlations of over 20%, yields
wrong PD forecasts. Finally, Schönbucher (2000) presents conditionally
independent models, ranging from the simple case of a homogeneous
portfolio to the complex structures of a multi-factor model.

III. Calibration Approaches

The assignment of default probabilities to a rating model's output is
referred to as calibration (OeNB/FMA (2004)). The rating model's output
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may be a grade or other score value. The probability of default p of a
portfolio of debtors can also be denoted as a vector of probabilities of
defaults considering multiple rating classes, mainly in order to facilitate
reporting. The internal rating system may consist of R rating grades. The
vector p � �p1; . . . ;pR� denotes the corresponding PDs. In the following
we focus on either one rating class or the whole portfolio at once, denot-
ing the PD as p.

The quality of calibration depends on the degree to which the PDs
forecasted by the rating model match the default rates actually realized.4

The basic data used for calibration are:

± The PD forecasts over a rating class and the credit portfolio for a spe-
cific forecasting period.

± The number of obligors assigned to the respective rating class by the
model.

± The default status of the debtors at the end of the forecasting period.

In practice, realized default rates are subject to huge fluctuations.
Thus, it is necessary to develop indicators to show how well a rating
model estimates the PDs, i. e. to check the significance of deviations in
the default rate. Therefore, we calculate confidence intervals at two con-
fidence levels: 95% and 99.9%. These levels correspond to a traffic lights
approach for practice in Germany for the purpose of interpreting confi-
dence levels proposed by Tasche (2003). We calculate confidence inter-
vals (upper bounds and lower bounds) for the two confidence levels such
that the probability that the true number of defaults does not exceed the
confidence intervals' upper bounds will equal 95% (low) and 99.9%
(high) respectively.

Tasche (2003) recommends using traffic lights as indicators of whether
deviations of realized and forecasted default rates should be regarded as
significant or not as follows:

± Green traffic light: The true default rate is equal to or lower than the
upper bound default rate at a low confidence level. The PD forecast
seems to be appropriate as there is no significant deviation of the fore-
casted default rate from the true default rate.

± Yellow traffic light: The true default rate is higher than the upper
bound default rate at a low confidence level and equal to or lower
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than the upper bound default rate at a high confidence level. This case
needs to be subjected to further analyses.

± Red traffic light: The true default rate is higher than the upper bound
default rate at a high confidence level. This case is regarded as being
significant, and has to be emended as the likelihood of a wrong PD
forecast is too high.

In section IV., we use two different approximation approaches and two
simulation models to determine confidence intervals depending on the
level of confidence. Testing the different methods we determine confi-
dence intervals for the number of defaults and the default rates that are
still acceptable in terms of the calibration of the rating model.

The simplest way to compute confidence intervals can be used if one
assumes uncorrelated default events. Under this assumption, confidence
intervals based on the standard normal distribution are employed for the
purpose of comparison (OeNB/FMA (2004)). As the banking industry ex-
periences dependent default events in loan portfolios, methods that
assume independence are not appropriate for validating probabilities of
default. The dependence between defaults by different obligors may have
multiple different causes. Correlations among debtors exist directly and
indirectly via economic factors. Direct relations exist already if one obli-
gor is a debtor of the other, or one is the other's customer. Even if direct
dependency structures are not obvious, indirect dependency can be
caused by the influence of macroeconomic or industry-specific factors
that both debtors have in common.

Düllmann and Scheule (2003) find asset correlations ranging between
0.9% and 9.4% for German companies.5 Default correlations that are not
equal to zero increase fluctuations in PDs (OeNB/FMA (2004)). The as-
sumption of uncorrelated defaults generally yields an overestimate of the
significance of deviations of the true default rate from the forecast rate.
If the true default rate is higher than the forecast rate the true risk will
be underestimated. From a conservative risk assessment standpoint,
overestimating credit risk significance is not critical in the case of risk
underestimates. This implies that it might be possible to operate under
the assumption of uncorrelated defaults. But continuous overestimates of
significance will lead to more frequent recalibration of the rating model,
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which can also have negative effects on the model's stability over time. It
is therefore necessary to determine as precisely as possible the extent to
which default correlations influence PD estimates.

1. One-factor Model

Factor models are used to provide correlated defaults by using Monte
Carlo simulations.6 Factor models serve to calculate confidence intervals
depending on the probability of error � in a simulation process determin-
ing the number of defaults that can still be tolerated in terms of the cali-
bration of the model.

Vasicek (1997) introduced a widely used one-factor model. In this one-
factor model all probabilities of default depend on a single random vari-
able X that models correlation or systematic risk. The PD is decomposed
into a monotonic function of the one factor X and a residual �. The
factor X models the systematic risk whereas � represents the idiosyn-
cratic risk of every individual debtor. These variables are assumed to be
standard normally distributed. Thus, every single debtor i will be as-
signed an individual idiosyncratic risk �1; . . . ; �n. These obligor-specific
risk variables �i can be interpreted as the debtor's key financial figures
such as the return on equity.

In order to calculate the confidence intervals, the one-factor model
will serve as a stochastic model to determine the number of defaults Dn.
The one-factor model can be written as:

Dn �
Xn

i�1

1Ei �
Xn

i�1

1f ���p X�
������
1ÿ�
p

�i�tg:�1�

The number of defaults in a certain period of time equals the sum of
default events E that are expected among the n debtors. 1E denotes a
binary indicator function. If a specific debtor i is expected to default, the
indicator function is one, and zero otherwise. Dependent default events
are modeled by using a uniform asset correlation � that is addressed to
the independent standard normal random variables X and �i. The ques-
tion whether a default occurs or not can be addressed by defining a
threshold t in such way that a default occurs if

���
�
p

X � �����������
1ÿ �p

�i falls short
of the threshold.
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As it should always be possible to calibrate the factor model to mirror
specific PDs, the threshold t has to be chosen in such a way that the
expectancy of the number of defaults of a portfolio equals the probabil-
ity of default times the number of obligors in the respective portfolio. As
an example among others, Tasche (2003) recommends setting t to �ÿ1�p�,
where �ÿ1 denotes the inverse of the standard normal distribution func-
tion and p denotes the realized PD.

2. Granularity Adjustment Approach

The Basel Committee on Banking Supervision conceived the granular-
ity adjustment approach as part of the Basel II proposals for reforming
the calculation of regulatory capital for credit risk (BCBS (2001)). Orig-
inally, Gordy (2003) invented the approach using CreditRisk+TM. Wilde
(2001) enhanced the approach and derived it theoretically for any one-
factor model. The granularity approach is a formula for risk effects in a
portfolio of loans assessing the change of percentiles when enhancing the
risk of the portfolio. This risk can be interpreted as all the concentration
risk comprised in the portfolio (Martin and Wilde (2002)).

First, economic or systematic risk has to be assessed, which is defined
as the risk attributed to the portfolio if all loans could be subdivided
into infinitely many infinitesimal loans. In this hypothetical case the
portfolio would be infinitely granular. Second, the granularity adjust-
ment can be conducted as an adjustment for concentration risk. Infini-
tesimal loans are only hypothetical as is an infinitely granular portfolio.
Thus, the actual portfolio typically comprises a higher level of risk than
this hypothetical portfolio. The granularity adjustment proves to be ap-
propriate though, as the marginal impact of additional risk on the per-
centiles of the distribution of default rates can analytically be evaluated
quite exactly. To approximate the confidence intervals of the distribution
of the default rate, i. e. the quantiles q��1ÿ ��;Rn�, the granularity ad-
justment approach can be used as follows:

The substructure of the approximation is a second order Taylor expan-
sion of q��1ÿ ��;Rn� that can be written as follows:

q��1ÿ ��;Rn� � q��1ÿ ��;R� h�Rn ÿ R�� h�1j�2�

A parameter h is introduced for the second order Taylor expansion to
be multiplied with the difference �Rn ÿ R�. Thus, h can be interpreted
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as a measure of the difference of Rn to R. At first, h is set to be one,
addressing Rn directly. Rn is not yet known, thus Rn will be approxi-
mated by R� h�Rn ÿ R�.

For h � 1, (2) is an equation based on the fixed default rate R. (2) can
then be approximated as

q �1ÿ ��;R
ÿ �

� @

@h
q �1ÿ ��;R� h�Rn ÿ R�
ÿ �

h�0 �
1
2

���� @2

@h2
q �1ÿ ��;R� h�Rn ÿ R�
ÿ �

h�0j :

�3�

(3) is a Taylor series in h, which is set to be zero now. Remaining on R
the term serves to determine the quantile q��1ÿ ��;Rn�.

For plausibility reasons, R in (2) and (3) can be determined as follows:

R � lim
n!1

Rn � �
tÿ ���

�
p

X�����������
1ÿ �p

� �
:�4�

Because R is known, the second order Taylor expansion can be based
on R. Based on the determined rate R in equation (4), the quantile
q��1ÿ ��;Rn� can be written as

q �1ÿ ��;Rn

ÿ �
� �

���
�
p

�ÿ1�1ÿ �� � t�����������
1ÿ �p

� �
:�5�

As a consequence, the quantile q��1ÿ ��;Rn� can be calculated (Tasche
(2003)). For computational reasons one can also write (5) as

q �1ÿ ��;Rn

ÿ �
� �

tÿ ���
�
p

�ÿ1��������������
1ÿ �p

� �
:�6�

The unknown quantile (2) can now be calculated using the approxima-
tion (6). Now, the derivatives can be computed. As (4) defines R, one
minor weakness of the granularity adjustment may occur, due to the fact
that the partial derivatives in (3) may not be calculated because the dis-
tribution of Dn is entirely discrete but was derived for smooth distribu-
tions (Tasche (2003)). Based on the analysis of Martin and Wilde (2002)
this weakness might be negligible as they found the approximation to
generate significant results although the distributions considered have
not been perfectly smooth.

Now, the known quantile q��1ÿ ��;Rn� of equation (6) can be applied
to equation (2) to calculate equation (7). Tasche (2003) uses the formulas
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for the derivatives determined by Martin and Wilde (2002) to create the
following granularity adjustment formula:

q �1ÿ ��;Dn

ÿ �
� nq �1ÿ ��;R

ÿ �
� 1

2

2q �1ÿ ��;R
ÿ �

ÿ 1� q �1ÿ ��;R
ÿ �

1ÿ q �1ÿ ��;R
ÿ �ÿ �

�
��
�
p

q��;X�ÿt�������
1ÿ�
p

� � ���
�
p

q��;X� ÿ t�����������
1ÿ �p ÿ

�������������
1ÿ �
�

s
q��;X�

 !0BB@
1CCA;

where ��x� � �2��ÿ
1
2 e
ÿx2

2 denotes the standard normal density.

3. Moment Matching Approach

Moment matching is based on the moment-generating function and has
no direct resemblance to the granularity adjustment approach. It approx-
imates the distribution of the default rate Rn with a Beta-distribution
(Tasche (2003)). The one-factor model is the foundation of the moment
matching approach as well. The parameters of the Beta-distribution are
determined by matching the expectation and the variance of Rn (Over-
beck and Wagner (2000)). From this procedure, the approximation de-
duces its name ªmoment matchingº, because the first and the second
central moments are being matched. The density of a B�a; b�-distributed
random variable Z is defined by

��a;b;x� � ÿ�a� b�
ÿ�a�ÿ�b� xaÿ1�1ÿ x�bÿ1;0 < x < 1;�8�

The Gamma-function ÿ expands the factorial function to the positive
reals. The first central moment, the expectation, of a random variable Z
is given by

E�Z� � a
a� b

;�9�

(Abramowitz and Stegun (1972)). Accordingly, the second central
moment, the variance of Z, is defined as

var�Z� � ab

�a� b�2�a� b� 1� :�10�

Now, let the random variable Z be replaced by the default rate Rn. The
moments can now be matched by equating the right-hand sides of (9)
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and (10) with E�Rn� and var�Rn� respectively to yield the following rela-
tions for the parameters a and b of the Beta-distribution:

a � E Rn� �
var Rn� � E Rn� � 1ÿ E Rn� �� � ÿ var Rn� �� ��11�

and

b � 1ÿ E Rn� �
var Rn� � E Rn� � 1ÿ E Rn� �� � ÿ var Rn� �� �:�12�

Based on the assumptions made for the one-factor model, the expect-
ancy of the default rate Rn equals the probability of default (PD):

E Rn� � � p�13�

The following equation represents the variance of the default rate Rn

accordingly

var Rn� � �
nÿ 1

n
�2�t; t; �� �

p
n
ÿ p2;�14�

with �2�t; t; �� denoting the distribution function of the bivariate stan-
dard normal distribution with asset correlation �. Unfortunately common
tools like MS ExcelTM do not provide algorithms for the calculation of
the bivariate standard normal distribution function �2. Thus, we use

�2�t; t; �� � ��t�2 � eÿt2

2�
��� 1

2
�2t2��15�

as an approximation for �2 in (14) following Tasche (2003).

Thus, the moment matching approach serves to determine confidence
intervals and upper bound default rates analytically at good accuracy,
too. To deliver appropriate results, the approximation requires the same
set of input parameters as does the granularity adjustment approach: an
asset correlation �, the realized PD p, the number of debtors n consid-
ered, and a requested confidence level. Based on the above equations, the
confidence interval (quantile) q��1ÿ ��;Dn� can be determined via the ap-
proximation

q��1ÿ ��;Dn� � nq��1ÿ ��;Z�:�16�

with Z as a B�a; b�-distributed random variable.
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4. Multi-factor Model

The general framework of the factor models can be adopted for a
multi-factor model, too. A multi-factor model can be defined as a latent
variable model. A default occurs if a latent variable falls below a defined
threshold t. Accordingly, a term of variables can be interpreted as the
value of the obligor's assets, and the threshold t as the value of the obli-
gor's liabilities. The dependence between the latent variables causes de-
pendency of defaults. Driven by these specific variables, the model may
incorporate macroeconomic factors like the business cycle and industry-
specific factors.7

Whereas a uniform asset correlation for all debtors in a portfolio is
assumed in the one-factor model, this assumption will be given up and
extended to a matrix of individual debtor-specific asset correlations. For
every debtor considered in the portfolio, individual factor weights and
idiosyncratic attributes can be considered, yielding an asset correlation
matrix PP reflecting individual dependency structures.

To ensure the comparability of the simulation results of the multi-
factor model with the simulation results of the one-factor model the
asset correlation matrix of a multi-factor model should also allow the
calculation of a uniform asset correlation under specific conditions. The
asset correlation matrix PP can be calculated using a correlation matrix
of estimated correlations among all macroeconomic or industry-specific
factors in addition to a matrix of the estimated influences of every factor
on every single debtor in the selected credit portfolio.

We consider a two-factor model as an example of a multi-factor model.
We assume dependency structures between the two factors and the influ-
ences of the two factors on every debtor. For each debtor we assign a
weight to every factor in addition to an idiosyncratic weight. If this set
of correlation structures yields a uniform asset correlation � comparable
to the asset correlations assumed in the one-factor model, the simulation
results can be compared. In general, the asset correlation matrix PP of the
multi-factor model is an output of the dependency structures of the fac-
tors and the obligors considered and thus can vary infinitely. Only as-
signing for all debtors the same weights to the respective factors and the
same idiosyncratic weight yields a uniform asset correlation � compar-
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7 Our multi-factor model is based on the CreditMetricsTM framework (Gupton/
Finger/Bhatia (1997)) and the results of Tasche (2003), Hamerle/Liebig/Scheule
(2004), Lucas (1995), Huschens/Stahl (2004) and Schönbucher (2000).
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able to the asset correlation � assumed in the one-factor model. In this
case the asset correlation matrix PP consists of equal correlations �

(except for the main diagonal that assumes the value 1).

A multi-factor model can be expressed as a model which includes idio-
syncratic obligor-specific and statistical risk drivers and in our case two
systematic risk drivers. A debtor i defaults in the observed period of
time if:

�1iX1 � �2iX2 � �3i�i � t�17�

To determine the number of defaults for the calculation of confidence
intervals and the PD forecast we annotate the two-factor model as fol-
lows:

Dn �
Xn

i�1

1Ei
�
Xn

i�1

1
�1iX1��2iX2��3i �i�tf g:�18�

As asset correlation models the co-movement of two obligors' �i and
j 6� i� asset values Vi; � can be defined as:

�ij�Vi;Vj� �
Cov�Vi;Vj������������������

Var�Vi�
p �����������������

Var�Vj�
p ; i 6� j�19�

Accordingly, default correlation can be derived from the asset correla-
tion:

Corr�Di;Dj� �
�2 t; t; �ij�Vi;Vj�
ÿ �

ÿ p2

p�1ÿ p� ;�20�

with Di and Dj denoting the number of defaults of two correlated obli-
gors i and j respectively, and �2�t; t; �ij� denoting the distribution function
of the bivariate standard normal distribution.

To determine the weight vectors �fi of the multi-factor model and to
extend the assumption of a uniform asset correlation � made in the one-
factor model for all debtors of a portfolio into a matrix PP of individual
debtor-specific asset correlations in a multi-factor model, standard
weights have to be assigned to every debtor, concerning its dependency
on the macroeconomic factors and the idiosyncratic risk.8
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To calculate obligor-specific weight vectors, consider an obligor i with
dependencies on 2 macroeconomic factors X1 and X2 and with a weight
on idiosyncratic risk of �i. The factors account for �1ÿ �i� of the move-
ments of a debtor's equity or asset values. The volatility of the weighted
index for an obligor i considering weights w1i and w2i on the two sys-
tematic factors respectively can be written as:

�i
^ �

���������������������������������������������������������������������
w2

1i�
2
1 �w2

2i�
2
2 � 2w1iw2i�12�1�2

q
;�21�

with volatilities �1 and �2 for factors X1 and X2 respectively, and inter-
factor correlation �12 between the two factors X1 and X2. The three vec-
tors �fi�f � 1; 2; 3� alter for every debtor i�i � 1; . . . ;n� accordingly. We an-
notate the two macroeconomic weight vectors as follows:

�1i � �1ÿ �i�
w1i�1

�i
^ ; �2i � �1ÿ �i�

w2i�2

�i
^ ; i � 1; . . . ;n:�22�

The idiosyncratic weight vector �3i for the debtor-specific idiosyncratic
risk factor �i can be written as follows:

�3i �
���������������������������
1ÿ �1ÿ �i�2

q
; i � 1; . . . ;n�23�

Considering various macroeconomic or industry-specific factors we
continue with the treatment of asset correlation in the multi-factor
model. The asset correlation matrix PP considering all debtors and all sys-
tematic and idiosyncratic factors will be the product of the matrices WW
and CC. CC denotes the correlation matrix covering both the correlation
matrix for the macroeconomic factors FF and the idiosyncratic risk fac-
tors �i of every debtor. WW denotes the weights matrix for every debtor.
The result is the asset correlation matrix consisting of the correlations
between all debtors. In order to compare the simulation approaches of
the one-factor model and the multi-factor model a uniform asset correla-
tion is required. Thus, we choose for any debtor the same weights w1,
w2, and � in the input matrix yielding a uniform asset correlation matrix
with a uniform asset correlation � for every debtor.

IV. Comparison of the Different Approaches

The first analysis focuses on determining confidence intervals for the
default rate Rn, dependent on different asset correlations. While the
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highest asset correlation occurring in the Basel II framework is 24%,
Tasche (2003) recommends an asset correlation of 5% for Germany. To
include all plausible values, we vary the asset correlation from 0 to 10%.
Besides different asset correlations, we analyze the quality of different
methods and calculate confidence intervals and upper bound default
rates in dependence on the different model parameters as follows:

± confidence level (95% and 99.9%),

± PD (1% to 10%),

± and the size of rating classes or the size of the portfolio (50 to 1,000
debtors).

Comparing the simulation results of the one-factor and the multi-
factor model and the analytical results of the two approximation meth-
ods using the moment matching and the granularity adjustment ap-
proaches, we first create confidence intervals for a credit portfolio con-
sisting of 1,000 debtors. All simulation results, i. e. for the one-factor
model and the multi-factor model, are based on 5,000 scenarios using
Halton random numbers.9

Comparing factor-model and approximation method results for a (uni-
form) PD of 2% at confidence levels of 95% and 99.9% we analyze the
dependence of the confidence intervals on asset correlation. From a con-
servative point of view and considering the threat when underestimating
the true PD significantly, we consider narrower confidence intervals and
lower upper bound default rates to indicate a higher level of backtesting
precision. The consecutive figures present the results graphically and
depict either the width of the confidence interval or the upper bound of
the confidence interval on default rates in dependence on different model
parameters.

Figure 1 shows that with increasing asset correlation, the upper bound
default rates rise. This tendency is also documented by Tasche (2003) and
by Schönbucher (2000) who observe that asset correlation significantly
affects the magnitude of the PD. Second, with increasing asset correla-
tion the differences between the one-factor model and the multi-factor
results increase. For 1% asset correlation the upper bound default rates
are equal for the approximation approaches. For less than 1% asset cor-
relation, the approximation results of moment matching generate in-

Kredit und Kapital 4/2007

9 Halton numbers are quasi-random numbers which avoid any asymptotic peri-
odicity; see Jäckel (2001). Sensitivity analyses show that even with 1,000 scenarios
we could produce robust results.

540 AndrØ Güttler and Helge G. Liedtke

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/ccm.40.4.527 | Generated on 2025-10-31 12:47:17



creasingly higher upper bound default rates. At asset correlations close
to 0%, the granularity adjustment does not calculate reasonable results
as it is not defined for an asset correlation of zero. Thus, in the case of
asset correlations less than 0.5%, we recommend that only the moment
matching method be used when approximating upper bound default
rates analytically.10 In general, the approximation approaches overesti-
mate the upper bound default rates compared to the simulation results.
The multi-factor model results are more precise considering the multiple
factors, invariably generating lower upper bound default rates than the
one-factor model does.

For regulatory purposes, only the upper bound default rates are impor-
tant. But for banks' internal use, the lower bound default rates are also
important; e.g. for pricing purposes the PDs should not be too conserva-
tive. Hence, looking at the width of the confidence intervals determined
by the factor models (difference between upper bound and lower bound
default rates), the results of both simulation methods show increasing
intervals with rising asset correlations (see Figure 2). The multi-factor
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Figure 1: Upper Bound Default Rates in Dependence on
Different Asset Correlations (95% Confidence Level)

10 However, asset correlations of less than 0.5% are quite unrealistic, although
close to this level Düllmann/Scheule (2003) find asset correlations of about 0.9%.
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model intervals are tighter, underlining the higher precision and accu-
racy of the multi-factor model due to its advantages in assessing a larger
set of variables considering multiple factors. Compared to the structures
of the 95% confidence intervals, the 99.9% confidence intervals are
wider.11 The tendency of the one-factor model to slightly overestimate
the multi-factor model confidence intervals observed at a 95% confi-
dence level still occurs, but at this very high confidence level, we find
only a slight difference. Thus, both factor-models generate adequate
forecasts.

We now analyze the upper bound default rate in dependence on differ-
ent asset correlations for the 99.9% confidence level (see Figure 3). The
differences in the determined bounds between simulation and approxi-
mation results become more pronounced. Now, the moment matching ap-
proach underestimates the true upper bounds of the confidence intervals
as this method faces more and more restrictions for extreme sets of para-
meters. However, in line with Tasche's observations, we find that the
granularity adjustment excels the moment matching results at high con-
fidence levels with an increasing asset correlation as the upper bound
default rates determined by moment matching deviate increasingly from
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11 Results are not shown here but are available upon request.

542 AndrØ Güttler and Helge G. Liedtke

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/ccm.40.4.527 | Generated on 2025-10-31 12:47:17



the granularity adjustment bounds. These results confirm Tasche's as-
sumption that the granularity adjustment is the more reliable of the two
approximation approaches. A weakness of the granularity adjustment
may be the fact that calculated percentiles may not be the sums of their
Taylor series (Martin and Wilde (2002)). This disadvantage can be debili-
tated otherwise, considering that using an approximation is not sup-
posed to yield a perfect copy of simulation results, but rather an appro-
priate and fast approximation to percentiles, which can always be
achieved using the granularity adjustment.

Next, we perform an analysis of the model validity in dependence on
the true PD. We choose a low uniform asset correlation level of 2% as
the effect of the asset correlation on the results is very minor at this
level, because simulation results and approximation values are approxi-
mately equal, ceteris paribus. The model results are very similar with
only marginal differences (see Figure 4). In dependence on the true PD,
the factor models as well as the approximation methods deliver stable
and precise results. Independent of the model, the upper bound default
rates increase as the probability of default increases. For every percent
increase in PD, the upper bound default rate increases by approximately
1.3% to 1.5%. The relationship is quite linear in all four models. Thus,
we conclude that in dependence on the true PD, the factor-models as
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on Different Asset Correlations (99.9% Confidence Level)
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well as the approximation methods deliver comparable results. Inde-
pendent of the model, the upper bound default rates increase in a linear
relationship as the probability of default increases.

Next, we subdivide the portfolio and build smaller portfolios to ana-
lyze the effect of the number of debtors on the model results. Exempla-
rily, we focus on portfolios consisting of 50 to 950 debtors in steps of 50
debtors {50, 100, 150, . . ., 950}. Finally the whole portfolio of 1,000 debt-
ors will be added. To separate the effect of the number of debtors from
the other parameters' influences we perform all test sets assuming an
asset correlation of 2% and a PD of 2% at a 95% confidence level. For
any set of parameters, every model determines at high levels of precision
confidence intervals that narrow (marginally) as the number of debtors
considered per portfolio increases (see Figure 5). The asset correlation,
the confidence level, and the true PD mainly affect the default rate level
of the curve. For the set of parameters chosen the slope is approximately
a 0.07% decrease in the upper bound default rate for any additional
debtor considered. The smaller the number of debtors per portfolio is,
the more the approximation methods overestimate the real upper bound
default rates. In general, for a decreasing number of debtors fewer than
150 to 250 (independent of the other model parameters), the simulation
and approximation upper bound default rates increase at higher rates
due to the small number of debtors available to determine precise de-
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Figure 4: Upper Bound Default Rates in Dependence on True PD
(95% Confidence Level)
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fault rates. Thus, independent of the method used and also independent
of the set of the other model parameters, the upper bound default rates
decrease as the number of debtors increases, as a higher number of debt-
ors enhances the ability to calculate more precise default rates.

At this point we would like to give further insights into the way in
which the results differ between the one-factor and the multi-factor
models. One main distinction between the multi-factor model and the
one-factor model is the treatment of asset correlation. In the one-factor
model a uniform asset correlation is assumed for the whole portfolio,
whereas the multi-factor model presented allows the calculation of obli-
gor-specific asset correlations depicted in an asset correlation matrix.
The multi-factor model offers the user a higher level of precision that
can be improved the more detailed the available historic and current
market data are, reflecting complex interdependencies among the differ-
ent model parameters. Even under the assumption of uniform asset cor-
relation, the multi-factor model allows tighter and more precise con-
fidence intervals to be calculated. Therefore, we will test the impact of
considering individual weights for every single debtor and the use of
complex dependency structures in the next section.
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V. Multi-factor Model Test with Heterogeneous
Asset Correlation

To compare the multi-factor with the one-factor model further, we first
give up the assumption of a uniform asset correlation. For every debtor,
individual weights on the macroeconomic and idiosyncratic risk factors
have to be considered to generate heterogeneous asset correlations.
Second, we use one specific two-factor model as the simplest form of a
multi-factor model. In our case, the two factors are the insolvency rate
and the growth in new orders. However, to simulate our models we need
the inter-factor correlation and variances for the two factors. We employ
the parameters of Hamerle, Liebig and Scheule (2004), which use a data-
set with 195,476 observations and 1,391 defaults for the period 1991
to1999. They find that the correlation between the insolvency rate and
the growth in new orders equals ±0.7851, the variance of the insolvency
rate equals 0.00000169, and the respective value for the growth in new
orders equals 0.00042436.12 Third, we need a representative set of com-
panies for our simulations. We assume 2,715 European companies as-
signed to 7 rating classes ranging from AAA to C. The cumulative his-
toric default rates over 7 years for companies domiciled in the European
Union are assumed to represent the true PDs of the respective rating
classes (Standard & Poor's 2005, see Table 1). We use the cumulative de-
fault rates over 7 years for two reasons:

1. Otherwise, i. e. by using one year default rates, the small number of
defaulting debtors would not serve to generate robust results in a sta-
tistical sense.

2. Seven years is the maximum period for which S&P provides default
data for European companies.

Even using cumulative default rates over 7 years, for AAA rated debt-
ors this value equals zero for the given period. To employ our simulation
approach, we set this value to 0.0001. We argue that this is appropriate,
given the fact that Basel II requires a minimum PD of 0.003.

The next two figures show exemplarily the distribution of default rates
for one rating class. The set of underlying parameters is as follows: the
(7 year) PD equals 31.64%, 940 individual debtors of rating class B with
different idiosyncratic weights for each debtor, the insolvency rate and

Kredit und Kapital 4/2007

12 Since we do not focus on detecting variables for estimating default rates in
this paper, and since Hamerle/Liebig/Scheule (2004) provide appropriate para-
meters, we do not conduct an own empirical assessment.

546 AndrØ Güttler and Helge G. Liedtke

OPEN ACCESS | Licensed under CC BY 4.0 | https://creativecommons.org/about/cclicenses/
DOI https://doi.org/10.3790/ccm.40.4.527 | Generated on 2025-10-31 12:47:17



the growth in new orders are the macroeconomic factors for the two-
factor model (Figure 6).

The vertical lines show the confidence interval bounds for the 95%
confidence level. Compared to the multi-factor model results in Figure 6,

Kredit und Kapital 4/2007

Table 1

Seven Year Cumulative Default Rates

Rating class Cumulative default rate Number of debtors

AAA 0.0001 39

AA 0.0071 84

A 0.0082 416

BBB 0.0139 572

BB 0.1040 552

B 0.3164 940

C 0.5294 112

Total 2,715

Source: Standard & Poor's (2005)
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Figure 6: Frequency Distribution of Default Rates for a Two-factor Model
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the one-factor model results in Figure 7 are less precise because the one-
factor model does not allow different macroeconomic factors to be con-
sidered, but only one systematic factor, and because it cannot consider
individual debtor-specific weight vectors and asset correlations. Thus,
the confidence intervals determined by the multi-factor model are much
tighter and more precise and the determined frequency distribution is
subject to less volatility and follows the assumed normal distribution
more eloquently.13 In conclusion, the multi-factor model test confirms
the improved quality of the multi-factor model compared to the one-
factor model and shows the dependency of the model results on the
chosen macroeconomic factors and the sample of debtors with their re-
spective characteristics. The results of this section show that the oppor-
tunity to reflect individual asset correlations among all debtors further
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Figure 7: Frequency Distribution of Default Rates for a One-factor Model

13 As the same set of data was used when parameterizing the models, the model
characteristics can always be compared at the best, when applying identical sets
of data to both models; the set chosen can strengthen the different model charac-
teristics and outline the respective advantages of a model. In this case the more
detailed set of data applied to both models allows to further assess the opportu-
nities of the multi-factor model as it incorporates the different data characteris-
tics in a more comprehensive way.
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increases the precision and the explanatory power of the multi-factor
model.

VI. Summary

This paper has compared four different approaches to testing the qual-
ity of calibration. We find that the higher the asset correlation, the
higher the upper bound default rates are and the wider the confidence
intervals become. This is in line with previous results (e.g. Tasche
(2003)), which is interesting, since we are the first to analyze multi-
factor models in addition. The multi-factor model generates more precise
results given the lower upper bound default rates and narrower con-
fidence intervals. For confidence levels of 95%, the approximation ap-
proaches overestimate the upper bound default rates. On the other hand,
for confidence levels of 99.9%, the moment matching approach underes-
timates the upper bound default rates. For low asset correlation, espe-
cially for less than 0.5%, the granularity adjustment approach does not
deliver reasonable results. All four approaches give comparable results if
we vary the true PD for a given asset correlation. For low numbers of
debtors in a given rating class (or credit portfolio), the approximation
approaches sharply overestimate the upper bound default rates. This
result becomes even more pronounced for a higher confidence level of
99.9%. Using empirical inter-factor correlations for an illustrative two-
factor model we find that confidence intervals of this two-factor model
(as they are in general for multi-factor models) are much tighter com-
pared with the one-factor model.
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Summary

Calibration of Internal Rating Systems:
The Case of Dependent Default Events

We compare four different test approaches for the calibration quality of internal
rating systems in the case of dependent default events. Two of them are approxi-
mation approaches and two are simulation approaches of one- and multi-factor
models. We find that multi-factor models generate more precise results through
lower upper bound default rates and narrower confidence intervals. For confi-
dence levels of 95%, the approximation approaches overestimate the upper bound
default rates. For low asset correlation, especially for less than 0.5%, the granu-
larity adjustment approach does not deliver reasonable results. For low numbers
of debtors, the approximation approaches sharply overestimate the upper bound
default rates. Using empirical inter-factor correlations we find that confidence in-
tervals of two-factor models are much tighter compared with the one-factor
model. (JEL C6, G21)

Zusammenfassung

Kalibrierung interner Ratingsysteme
bei korrelierten Ausfallereignissen

In dieser Arbeit vergleichen wir vier verschiedene Testverfahren für die Qualität
der Kalibrierung interner Ratingsysteme bei korrelierten Ausfallereignissen. Zwei
der Ansätze sind approximativer Natur und die anderen zwei stellen Simulations-
ansätze auf Basis von Einfaktoren- bzw. Mehrfaktorenmodellen dar. Wir finden,
dass die Mehrfaktorenmodelle präzisere Ergebnisse in Form niedrigerer, oberer
Grenzen der Ausfallraten und engerer Konfidenzintervalle liefern. Für ein Konfi-
denzniveau von 95% überschätzen die approximativen Ansätze die oberen Gren-
zen der Ausfallraten. Für niedrige Assetkorrelationen, vor allem für solche unter
0,5%, liefert der Granularitätsansatz keine belastbaren Ergebnisse. Für kleine
Portfoliogröûen überschätzen die approximativen Ansätze zudem die oberen Gren-
zen der Ausfallraten deutlich. Bei einer Anwendung empirischer Faktorkorrelatio-
nen finden wir auûerdem, dass die Konfidenzintervalle eines Zweifaktorenmodells
im Vergleich zum Einfaktorenmodell erkennbar enger sind.
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