Probleme der Modellierung der Zinsstruktur in makroökonometrischen Modellen

Von H. König, W. Gaab und J. Wolters, Mannheim

I.

Im allgemeinen gilt der langfristige Zinssatz als einer der wesentlichen Kanäle der Geldpolitik zur Beeinflussung der gesamtwirtschaftlichen Aktivität. Seine "Steuerung" wird dabei entweder durch eine Variation des Diskontsatzes und der damit einhergehenden Änderung der Refinanzierungskosten des Geschäftsbankensystems und/oder durch eine Veränderung der Abgabe- bzw. Rückkaufsätze von Geldmarktpapieren angestrebt. Wirkungsgrad und -schnelligkeit dieser geldpolitischen Maßnahmen hängen deshalb von der Funktionsweise der Zinsstruktur ab: ob und in welchem Maße Änderungen der kurzfristigen Zinssätze in entsprechenden Änderungen der Renditen langfristiger Wertpapiere resultieren.

In ökonometrischen Modellen versucht man diesen Transmissionsmechanismus der Geldpolitik in der Regel durch folgende Ansätze zu erfassen:

- (1) die Zinssatzbestimmung erfolgt in einem interdependenten Marktmodell, in dem Störungen des Gleichgewichts beispielsweise durch Aktionen der Zentralbank einerseits Umschichtungen in den Portfolios der Nachfrager nach Wertpapieren induzieren und andererseits die Veränderungen der (relativen) Finanzierungskosten bei den Anbietern eine Fristensubstitution zur Folge haben;
- (2) die Bezugnahme auf die Hicks-Lutz-Version der Erwartungstheorie der Zinsstruktur führt dazu, mittels der zusätzlichen Annahme einer adaptiven Erwartungsbildung als "besten" Prediktor des langfristigen Zinssatzes ein lag-Polynom der Realisationen des kurzfristigen Zinssatzes in der Vergangenheit zu verwenden;
- (3) die Annahme der Existenz effizienter Märkte, also einer fehlenden Korrelation zwischen der Informationsmenge der Vorperioden und

der tatsächlichen Rendite eines Wertpapieres in der gegenwärtigen Periode erlaubt wegen der dann vorgegebenen Eigenschaften eines Martingalprozesses als besten Prediktor des langfristigen Zinssatzes entweder die Realisation der Vorperiode oder den zu Beginn der Periode herrschenden kurzfristigen Zinssatz zuzüglich einer Liquiditätsprämie heranzuziehen.

Im folgenden wollen wir untersuchen, welche dieser Hypothesen besser geeignet ist, in einem Modell des monetären Sektors der Bundesrepublik Deutschland die Wirkungsweise der Zinspolitik zu beschreiben und welche prinzipiellen Unterschiede sich für den Prozeßablauf ergeben. Die übliche Vorgehensweise¹, die empirische Relevanz der Hypothesen unter Vernachlässigung aller übrigen, das monetäre Verhalten kennzeichnenden Strukturrelationen zu "testen", scheint uns unbefriedigend, da wegen der Existenz simultaner Zusammenhänge verzerrte Schätzwerte der Parameter und/oder eine nicht ausreichende Spezifikation zu irreführenden Schlußfolgerungen bezüglich der Bedeutung der jeweiligen Hypothese führen können. Wir werden deshalb die jeweilige Hypothese für die Zinsstruktur explizit in einem Modell des monetären Sektors berücksichtigen, ihren Effekt auf die dynamische Struktur des Modells zum einen durch eine Berechnung der Eigenwerte des deterministischen Systems und zum anderen durch einen Vergleich von Spektralgrößen aufzeigen, die auf Grund der (geschätzten) Varianz-Kovarianz Matrix der Restgrößen theoretisch berechnet sowie für die einzelnen Zeitreihen empirisch geschätzt wurden².

Im nächsten Abschnitt werden kurz die Eigenschaften und die methodische Problematik der obigen Hypothesen diskutiert. Es folgt dann die Wiedergabe und Interpretation der Schätzergebnisse sowie eine Darstellung des Wirkungsablaufes der Diskontpolitik. Das den Berechnungen zugrundeliegende Modell ist im Anhang I wiedergegeben, Anhang II beschreibt den methodischen Ansatz.

¹ Vgl. zum Beispiel C. R. Nelson [1972], F. S. Mishkin [1978].

² Streng genommen verlangt der Austausch der Hypothesen über die Funktionsweise des Kapitalmarktes auch eine entsprechende Anpassung des theoretischen Ansatzes bei allen übrigen Märkten, da a priori nicht einzusehen ist, warum beispielsweise der Kapitalmarkt effizient sein soll, auf den übrigen Märkten jedoch die Marktteilnehmer nicht oder nur unvollkommen ihre Gewinnchancen ausschöpfen. Die für diese Vorgehensweise notwendige Neuspezifikation und -schätzung des gesamten Modells übersteigt unsere (persönlichen und finanziellen) Möglichkeiten, so daß die Ergebnisse mit diesem Vorbehalt beurteilt werden sollten.

II.

Die Marktgleichgewichtshypothese wird in ökonometrischen Modellen meist in zwei Versionen verwendet: (i) Sowohl Angebots- als auch Nachfragefunktionen für kurz- und langfristige Wertpapiere enthalten als abhängige Variablen die Wertpapiermengen bzw. die als optimal angestrebten Bestände, die dann mittels partieller Anpassungsmechanismen in tatsächliche Bestandsveränderungen transformiert werden³. (ii) Der Portfolio-Theorie entsprechend werden die Nachfragefunktionen mit den Beständen als abhängige Variable formuliert, während die Angebotsfunktionen den jeweiligen Zinssatz als Abhängige aufweisen, so daß im Gegensatz zur ersten Version nicht Bestände der Vorperioden, sondern lag-Werte der Zinssätze als prädeterminierte Variable auftreten⁴.

In beiden Fällen besteht der Vorzug dieses Ansatzes wegen seiner Äquivalenz zum üblichen preistheoretischen Modell in einer ökonomisch unmittelbar einsichtigen Spezifikation, für die weder die Annahme einer konstanten Liquiditätsprämie wie bei der Erwartungshypothese noch eines konstanten Gleichgewichtszinses wie bei der Hypothese effizienter Märkte erforderlich sind. Darüber hinaus können Änderungen im Vermögensniveau und in der -struktur in ihren Auswirkungen auf Zinsniveau und "term structure" direkt erfaßt werden. Als wesentlicher Nachteil wird vor allem die Tatsache angesehen, daß die dafür erforderliche Schätzung größerer und komplexer Systeme hohe Kosten verursacht, und daß Prognosen über das zukünftige Verhalten der Zentralbank außergewöhnlich unsicher und u. U. auch mit der Theorie effizienter Märkte inkonsistent seien⁵. Bei der ersten Spielart dieses Ansatzes kommt hinzu, daß die Störglieder der jeweiligen Gleichung für die Bestände als abhängige Variable spezifiziert sind und deshalb die Lösung des Modells für den Zinssatz größere Prognosefehler zur Folge hat.

Eine der empirischen Überprüfung zugängliche Verallgemeinerung der Erwartungstheorie ist die sog. "preferred habitat"-Theorie von Modigliani-Sutch⁶, die auf Präferenzen beider Marktseiten für die

³ Vgl. dazu F. de Leeuw [1965] für das Brookings-Modell und H. König, W. Gaab, J. Wolters [1977] für die Bestimmung der Rendite der langfristigen Wertpapiere.

⁴ So z.B. *J. Martiensen* [1976] für eine Version des Bonner Modells. Vgl. ferner *K. Schildknecht* [1974], der für das Schweizer Modell, von wenigen Ausnahmen abgesehen, diesen Ansatz verwendet.

⁵ F. S. Mishkin [1978], p. 748.

⁶ F. Modigliani und R. Sutch [1966, 1967]. Für die BRD vgl. H. König und J. Wolters [1970], die für Monatsdaten der Periode 1956 I - 1967 VIII zeigen,

Fälligkeitsstruktur der Wertpapiere abstellt. Die bevorzugten Fälligkeiten (preferred habitats) werden als überlappend angenommen, so daß ein Kontinuum des Nachfrageüberschusses nach diesen Wertpapieren existiert und daher eine Fälligkeitsprämie (im *Hicks*'schen Sinne die Liquiditätsprämie) eine stetige Funktion der Fälligkeitsdaten ist.

Für den empirischen Test dieses Ansatzes ergibt sich das methodische Problem, die unbeobachtbare Erwartungskomponente der "forward rates" von der Fälligkeitsprämie zu trennen. Dazu wird die in ökonometrischen Studien übliche ad hoc Spezifikation eines Cagan'schen Erwartungsmechanismus benützt, der dann eine Verbindung zwischen den lag-Werte des kurzfristigen Zinssatzes und dem langfristigen Zinssatz zur Folge hat⁷.

Bezeichnet man mit RL_t^n die Rendite eines nach n Perioden fälligen Wertpapieres in der Periode t, mit RK_t den kurzfristigen (Ein-Perioden) Zinssatz in t und mit k die Liquiditätsprämie, dann gilt⁸ unter Verwendung der Approximation ln $(1+r) \sim r$

(1)
$$RL_t^n = k + \frac{1}{n} E_t (RK_t + RK_{t+1} + \dots + RK_{t+n-1}).$$

Unterstellt man nun, daß dieser kurzfristige Zinssatz dem Prozeß

(2)
$$RK_{t+1} = (1 - \omega) \sum_{i=0}^{\infty} \omega^{i}RK_{t-i} + u_{t+1}$$
$$= \frac{1 - \omega}{1 - \omega L}RK_{t} + u_{t+1}$$

folgt, wobei L den lag-Operator bezeichnet, dann gilt für den Erwartungswert

(3)
$$E_t(RK_{t+1}) = \frac{1-\omega}{1-\omega L} RK_t$$

und generell

daß dieser Ansatz kaum die Bewegungen von kurz- und langfristigem Zinssatz erfaßt. Vgl. weiterhin H. Fassbender [1973] und D. J. P. Jüttner, G. M. Madden, R. H. Tuckwell [1975]. Letztere erhalten im Gegensatz für Monatsdaten der Periode 1960 I – 1973 IX eine hohe Kohärenz zwischen kurz- und langfristigen Zinssätzen.

⁷ Dazu vgl. A. Ando und F. Modigliani [1975] für das MPS-Modell, W. Jahnke [1978] für das Bundesbank-Modell, das diese Version der Zinsstruktur ohne a priori Restriktionen verwendet. Ferner J. Kröger u. U. Westphal [1978] für das SYSIFO-Modell.

⁸ Vgl. dazu auch F. S. Mishkin [1978], C. R. Nelson [1972].

¹² Kredit und Kapital 2/1980

(3')
$$E_t(RK_{t+j} = E_t(RK_{t+j-1}) = \dots = E_t(RK_{t+1}) = \frac{1-\omega}{1-\omega L}RK_t.$$

Anstelle von (1) erhält man dann

(4)
$$RL_t^n = k + \frac{1}{n} \left[RK_t + (n-1) \left(\frac{1-\omega}{1-\omega L} \right) RK_t \right]$$

oder

(4')
$$RL_t^n - \omega RL_{t-1}^n = (1 - \omega) k + \frac{1}{n} [1 + (n-1) (1 - \omega)] RK_t - \omega/n RK_{t-1}.$$

Für die Quartalswerte der Periode 1962 I bis 1973 IV für die BRD ergibt sich im Rahmen des unterstellten Modells die zweistufig geschätzte Gleichung⁹

(5)
$$RW_{t} = 0.214 + 0.188 \ RMON_{t} - 0.162 \ RMON_{t-1} + 0.955 \ RW_{t-1}$$

$$(\pm 0.405)(\pm 0.033) \qquad (\pm 0.038) \qquad (\pm 0.078)$$

$$DW = 2.394; \ \sigma_{u} = 0.251 \ .$$

 RW_t ist dabei die (jährliche) Rendite festverzinslicher Wertpapiere, RMON der (jährliche) Dreimonatsgeldsatz¹⁰. Für $\omega=0.955$ folgt n=5.9 Jahre durchschnittliche Restlaufzeit der im Umlauf befindlichen festverzinslichen Wertpapiere, so daß der ohne Restriktion geschätzte Parameter für $RMON_t$ ungefähr dem durch diese Größen implizierten Wert entspricht¹¹.

Obwohl die Parameterschätzwerte unter statistischen Gesichtspunkten akzeptabel erscheinen¹², ergeben sich einige Probleme, auf die wir kurz

$$RL_t = 0.672 + 0.087 \ RMON_t + 0.105 \ \Delta \ RMON_t + 0.839 \ RL_{t-1}$$
(± 0.505) (± 0.035) (± 0.059) (± 0.083)

mit DW = 1.717; $\sigma_u = 0.410$.

Das impliziert eine Restlaufzeit der Kommunalobligationen von n=8.0 Jahren. Der für $1-\omega=0.161$ und n=8 implizierte Parameter 0.266 weicht nicht unbeträchtlich vom Schätzwert 0.087 + 0.105 = 0.192 ab. Die "steady-state" Lösung mit $\overline{RL}=0.54$ \overline{RMON} jedoch ist faktisch identisch mit derjenigen für $\overline{RW}=0.58$ \overline{RMON} .

⁹ In Klammern sind die Standardfehler angegeben.

¹⁰ Zur Definition der Daten vgl. Anhang I. Zur Datenproblematik siehe Fußnote 14 und Abschnitt IV.

¹¹ C. Ditzler, C. Koellreuter, P. Kugler [1978] erhalten für Quartalswerte der Periode 1968 IV - 1977 IV für die Rendite der Kommunalobligationen RL und den Dreimonatsgeldzinssatz RMON die Schätzgleichung

hinweisen. Wie Modigliani und Shiller [1973] gezeigt haben, sollten die Schätzwerte der Koeffizienten der Zinsstrukturgleichung mit denjenigen des Zeitreihenprozesses konsistent sein, wenn die Erwartungen "rational" gebildet werden. Die direkte Schätzung von Gleichung (2) ergibt mit $\hat{\omega}=0.110$ (\pm 0.121) jedoch einen Wert, der wesentlich von demjenigen in (5) abweicht und nicht signifikant von Null verschieden ist¹⁸. Es liegt daher nahe, für den kurzfristigen Zinssatz einen Martingalprozeß zu unterstellen; dies impliziert

(6)
$$RK_{t+1} = RK_t + \varepsilon_{t+1}$$
 mit $E(\varepsilon_t) = 0$ und $E(\varepsilon_t \varepsilon_{t'}) = \sigma^2$ für $t = t'$
$$= 0 \text{ für } t \neq t'.$$

Dann gilt für die Erwartungswerte der zukünftigen Perioden

$$E_t(RK_{t+1}) = E_t(RK_{t+1-1}) = \dots = E_t(RK_{t+1}) = RK_t$$

so daß für die Erwartungshypothese

(7)
$$RL_t^n = k + \frac{1}{n} (n RK_t) = k + RK_t$$

folgt. Eine Regression

$$RL_t^n = a_0 + a_1 RK_t + u_t$$

sollte, sofern die Annahme eines Martingalprozesses für RK_t zutrifft, $a_1=1$ liefern. Für die Schätzgleichung von (8) mit a priori-Restriktion bezüglich a_1 erhält man $\hat{a}_0=1.363$ (\pm 0.260) mit $\sigma_u=1.854$, ohne Restriktion ergeben sich $\hat{a}_0=5.148$ (\pm 0.171), $\hat{a}_1=0.358$ (\pm 0.026) mit $\sigma_u=0.517$ und DW=0.417. Der F-Wert von 19.77 gegenüber dem 1 % Signifikanzwert von F=1.94 (51,50) verdeutlicht, daß die Nichtberücksichtigung der Restriktion zu einer signifikanten Verbesserung der Schätzung führt, die DW-Statistik deutet auf eine nicht genügende Spezifikation hin: Die Annahme eines Martingal-Prozesses scheint also kaum gerechtfertigt¹⁴.

$$RMON_t - RMON_{t-1} = 0.049 (\pm 0.150) + u_t - 0.110 (\pm 0.121) u_{t-1}$$
.

 $^{^{12}}$ Die durch die DW-Statistik implizierte negative Autokorrelation der Restgrößen wurde mit dem Cochrane-Orcutt-Verfahren eliminiert. Der Schätzwert des Autokorrelationskoeffizienten erster Ordnung $\hat{p}=-0.201$ ($\pm~0.137$) ist jedoch nicht signifikant von Null verschieden.

¹⁸ Die Schätzgleichung ist

¹⁴ Ein nicht unwesentliches Problem besteht natürlich darin, daß u. U. der Dreimonatsgeldzinssatz kein adäquater kurzfristiger Zinssatz im Sinne der

Damit kommen wir zum dritten Ansatz, der Hypothese effizienter Märkte, die unterstellt, daß sich wegen des rationalen Verhaltens aller Marktteilnehmer alle relevante Information in den Marktpreisen widerspiegelt. Insbesondere für Finanzmärkte ist sie wegen der Homogenität des Gutes, der (beinahe) vollständigen Transparenz der Marktteilnehmer und der hohen Reaktionsgeschwindigkeit als ein realistischer Ansatz angesehen worden Da alle Marktteilnehmer versuchen, ihre Gewinnchancen auszunutzen, kann es keine systematischen Abweichungen vom Gleichgewichtspreis geben. Bezeichnet man also mit \overline{RL}_t den langfristigen Gleichgewichtszins, mit RL_t die tatsächliche Rendite der Periode t, die eine Zufallsvariable ist, dann gilt für

$$\xi_t = RL_t - \overline{RL_t} ,$$

daß

(10)
$$E(\xi_t | I_{t-1}) = 0,$$

wobei I_{t-1} die Informationsmenge in der Periode t-1 darstellt. Die übliche Annahme bei der empirischen Überprüfung der Hypothese besteht zunächst darin, daß der langfristige Gleichgewichtszins RLt im Zeitablauf konstant ist oder sich vergleichsweise zu anderen, die Rentabilität eines Wertpapieres determinierenden Faktoren wenig ändert, so daß die Korrelation zwischen RL_t und I_{t-1} nicht signifikant von Null verschieden ist. Als Informationsmenge bieten sich dabei an die Realisationen des Zinssatzes in den Vorperioden ("weak-test" im Sinne von Fama) oder andere Faktoren, die den Marktteilnehmern zugänglich waren ("semi-strong test"). In jedem Fall impliziert die Hypothese des effizienten Marktes einen Martingalprozeß für den Zinssatz, d. h. fehlende Korrelation mit seinen lag-Werten bzw. anderen, zusätzliche Information repräsentierenden Variablen. Unterstellt man wie F. S. Mishkin [1978, p. 728], daß ohne Steuerbelastung der langfristige Gleichgewichtszinssatz dem kurzfristigen Zinssatz zu Anfang der Periode zuzüglich einer Liquiditätsprämie entspricht, dann erhält man formal den gleichen Zusammenhang, wie er in Gleichung (7) bzw. (8) für die Erwar-

Erwartungshypothese (aber auch der Hypothese effizienter Märkte!) abgibt. Seine Fluktuationen sind u. U. weniger von Rentabilitätsaspekten als von Liquiditätsüberlegungen der Geschäftsbanken (bedingt durch Steuertermine, window dressing u. ä.) bestimmt. Der prima vista besser die Rentabilitätsüberlegungen reflektierende Schatzwechselsatz ist ebenfalls wenig geeignet, da er als Instrumentvariable der Bundesbank nicht notwendigerweise auf Grund von Marktvorgängen determiniert wird.

¹⁵ Vgl. z. B. E. Fama [1976], F. S. Mishkin [1978].

tungshypothese unter der Annahme, der kurzfristige Zinssatz folge einem Martingalprozeß, entwickelt wurde. Die signifikante Abweichung des Schätzwertes von a_1 sowohl von Eins als auch von Null impliziert, daß die Annahme eines konstanten Gleichgewichtszinses für den Untersuchungszeitraum problematisch sein kann. Trotz dieser Bedenken haben wir im Kontext mit der Modellbeurteilung sowohl von der Erwartungshypothese entsprechend Gleichung (5) als auch von der Hypothese effizienter Märkte gemäß (8) mit der a priori Restriktion $a_1=1$ und $\hat{a}_0=1.363$ Gebrauch gemacht.

III.

Im folgenden behandeln wir die Schätzergebnisse für die Zinsstruktur im Kontext des monetären Modells. Dabei gelten der Einfachheit halber für die folgenden Hypothesen die Abkürzungen:

H₀: die Lösungen des im Anhang I angegebenen Modells;

H₁: die Lösungen dieses Modells, wobei anstelle der Gleichungen AI (13) und
 AI (21) die Schätzungsgleichung der Erwartungshypothese (5) tritt;

 H_2 : die Lösungen dieses Modells, wobei anstelle der Gleichungen AI (13) und AI (21) die Gleichung (8) mit a priori Restriktion $a_1=1$ tritt und angenommen wird, der Restgrößenprozeß in (8) sei weißes Rauschen, das mit den übrigen Störprozessen des Systems unkorreliert ist¹⁶.

Hypothese H_2 geht somit davon aus, daß alle relevante Information für die langfristige Rendite im gegebenen kurzfristigen Zinssatz inkorporiert ist.

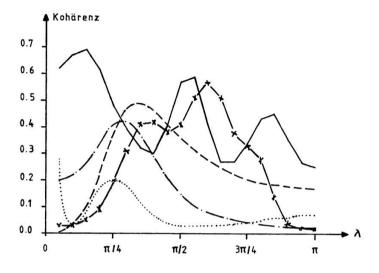
Ziel der empirischen Untersuchung ist es, unter Berücksichtigung aller im Modell des monetären Sektors enthaltenen Strukturrelationen die Hypothese bezüglich des langfristigen Zinssatzes zu finden, die den beobachteten dynamischen Zusammenhängen für die Zinsstruktur am besten entspricht. Dazu bietet sich folgende Vorgehensweise an:

 die Analyse der Auswirkungen der jeweiligen Hypothese auf die Eigenwerte des Systems¹⁷;

 $^{^{16}}$ Weiterhin wurde auch die Hypothese H_2 unter Berücksichtigung der Korrelation der Restgrößenprozesse getestet. Die numerische Instabilität bei der Inversion der komplexwertigen Matrix führte jedoch zu teilweise unsinnigen Ergebnissen. Auf deren Wiedergabe verzichten wir daher.

¹⁷ Die Linearisierung des Modells wird für Beobachtungswerte der Periode 1967 II vorgenommen. Linearisierungen zum Anfangs- und Endwert des Schätzzeitraumes führten zu keiner nennenswerten Änderung in den dynamischen Eigenschaften des Modells.

(2) die Eigenwerte bestimmen jedoch nur den Einschwingvorgang der endogenen Variablen. Sie geben keine Auskunft über die dynamischen Eigenschaften des Modells, die auf die stochastischen Terme zurückzuführen sind. Für deren Analyse ist für die jeweilige Hypothese eine Transformation der stochastischen Lösungen in den Frequenzbereich zweckmäßig. Die aus den jeweiligen geschätzten Varianz-Kovarianz-Matrizen gewonnenen Spektralmatrizen (vgl. AII, Gleichung 8) enthalten in der Hauptdiagonale die Spektren der endogenen Variablen, in allen übrigen Elementen die entsprechenden Kreuzspektren, so daß die Berechnung der üblichen spektralen Größen zur Charakterisierung bivariater Zusammenhänge - Kohärenz, Gain, Phasenwinkel — möglich ist. Würden keine exogenen Größen existieren oder werden diese durch ARMA-Prozesse guasi endogenisiert, dann müßten diese Maße bei richtiger Modellspezifikation mit den gleichen Maßen übereinstimmen, die über einen einfachen Zeitreihenansatz geschätzt werden. Signifikante Unterschiede zwischen den auf Grund des Modelles berechneten und den empirisch geschätzten spektralen Größen deuten dann cet. par. auf eine Fehlspezifikation des Modelles hin. Die Annahme, alle Variablen seien endogen, ist wenig realistisch und widerspricht vor allem der ökonometrischen Praxis. Enthält daher ein Modell exogene Variablen und werden diese bei der Berechnung der Spektralmatrix nicht explizit berücksichtigt, dann führt dies - wie im Anhang II beispielhaft gezeigt — zu Unter- bzw. Überschätzungen von Kohärenz und Gain, die vom Modelltyp abhängig sind. Ein Vergleich der berechneten und geschätzten Spektralgrößen läßt dann keinen Rückschluß mehr auf die Adäquatheit der Modellspezifikation zu, da Unterschiede in diesen Maßen durch die exogenen Variablen verursacht sein können. Da die Einbeziehung der exogenen Größen als ARMA-Prozesse den Umfang der Rechenarbeiten unvertretbar erhöht hätte, haben wir hier einen anderen Ansatz gewählt, um trotzdem durch einen Vergleich der berechneten und geschätzten Kohärenz und Gain eine Vorstellung über die empirische Relevanz der jeweiligen Hypothese zu gewinnen. Auf der Grundlage der bei der Parameterschätzung des Modelles in der ersten Stufe verwendeten Hauptkomponenten wurden die Schätzwerte für die nur hier interessierenden Zinsreihen errechnet. Die Differenz zwischen den beobachteten Werten und diesen Schätzwerten ist - wenn die Spezifikation für die exogenen Größen zutreffend ist -, die Komponente der Zinssätze, die durch den endogenen Teil des Modells erklärt werden soll. Diese Differenz wird dann verwendet, um die Spektralgrößen des Zeitreihenansatzes zu schätzen, die dann unmittelbar vergleichbar sind mit denjenigen, die aus dem Modell abgeleitet wurden.


Die Tabelle 1 gibt die Eigenwerte des Systems für diese Hypothesen wieder. Generell zeigt sich, daß dem Betrage nach relevante Zyklen von 23 und 7 - 9 Quartalen in allen Ansätzen erhalten bleiben, aber daß die Erwartungshypothese und die Hypothese effizienter Märkte die Anzahl komplexer Wurzeln reduzieren18. Für die dem Betrage nach größte konjugiert-komplexe Wurzel treten jedoch wegen des relativ kleinen Imaginärteils beträchtlichen Schwankungen in den Periodenlängen auf. Die Schaubilder 1-3 zeigen die Kohärenz und den Gain für den Dreimonatsgeldzins, den Sparzins und Termineinlagenzins einerseits und der Rendite für festverzinsliche Wertpapiere andererseits. Die durchgezogene Kurve gibt diese Spektralgrößen für die direkte Schätzung der Quartalswerte der Periode 1957 - 1973 an¹⁹, die gekreuzte Kurve diejenigen für die entsprechend dem oben geschilderten Ansatz um den Hauptkomponenteneffekt bereinigten Daten. Die auf Grund der Varianz-Kovarianz-Matrix des Modells berechneten Spektralmaße sind für die Hypothese H_0 (Gleichgewichts-Ansatz) punktiert, für die Hypothese H_1 (Erwartungstheorie) gestrichelt, für die Hypothese H_2 (effizienter Markt) strichpunktiert gezeichnet.

Generell zeigt sich, daß die für die Modellösung H_1 berechnete Kohärenz der empirisch geschätzten ("bereinigten" Version) am besten entspricht. Das gilt sowohl für den Zusammenhang zwischen RW und RMON, aber auch für die beiden anderen Zinssätze. Einen ähnlichen Verlauf weisen die Kohärenzen für die effiziente Markt-Hypothese H_2 auf, während H_0 in jedem Fall größere Divergenzen zu den empirisch geschätzten Größen zeigt. Ein ähnliches Bild ergibt sich für den Gain: Auch hier reflektiert H_1 die beste Approximation während H_0 beträchtliche Abweichungen aufweist. Noch stärkere Unterschiede ergeben sich allerdings für H_2 .

¹⁸ Die Wurzel von Eins ist auf die Differenzen-Version der Nachfragegleichung nach Spareinlagen A1 (4) zurückzuführen.

¹⁹ Um stabilere Schätzungen zu erhalten, wurde die Periode gegenüber den Modellschätzungen um 5 Jahre verlängert.

		Periode (Quartal)						109		23		7				1708	52		6	9	6				
Tabelle 1: Von Null verschiedene Eigenwerte der Größe nach geordnet (Linearisierung 1967 (II))	ente 7pothese	Betrag						0.768		0.694		0.658				0.521	0.515		0.416	0.364	0.328				
	Effiziente Markt-Hypothese	Imagi- närteil						± 0.044		± 0.185		± 0.528				± 0.002	± 0.062		± 0.277	± 0.330	\pm 0.207				
(Linearisi		Realteil	1.000	0.948	0.938	908.0	0.772	0.767	0.695	0.669	999.0	0.393	0.651	0.611	-0.541	0.521	0.511	-0.444	0.311	0.153	0.254				
nach geordnet		Periode (Quartal)							273		23			7			89	1081		6	9	6			
er Größe	Erwartungs- hypothese	Betrag							0.763		0.694			0.647			0.527	0.522		0.416	0.364	0.330			
werte d	Erwartungs hypothese	Imagi- närteil							± 0.018		± 0.185			± 0.520			\pm 0.048	± 0.003		± 0.276	\pm 0.330	± 0.208			
dene Eigen		Realteil	1.000	0.951	0.946	0.938	0.806	0.802	0.763	0.695	0.669	999.0	0.655	0.385	0.596	-0.541	0.525	0.522	-0.444	0.311	0.153	0.256			
schie			- X																						
Null ver		Periode (Quartal)					200				23		2	6		4	115	11		208		6	9	6	
e 1: Von	gleich- icht	Betrag					0.774				0.693		0.644	0.630		0.609	0.586	0.578		0.519		0.416	0.364	0.330	
Tabell	Marktgleich- gewicht	Imagi- närteil					\pm 0.007				± 0.184		± 0.518	± 0.413		± 0.608	± 0.032	± 0.316		± 0.016		± 0.276	± 0.331	± 0.208	
		Realteil	1.000	0.939	0.932	0.817	0.774	0.753	-0.719	0.695	0.668	999.0	0.384	-0.476	0.627	0.032	0.585	0.484	0.523	0.510	-0.444	0.311	0.152	0.256	

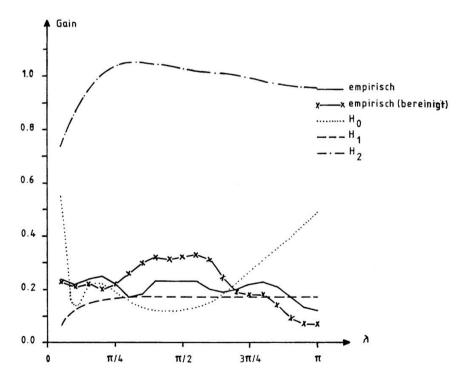


Schaubild 1: Kohärenz und Gain zwischen der Rendite festverzinslicher Wertpapiere und dem Dreimonatsgeldsatz

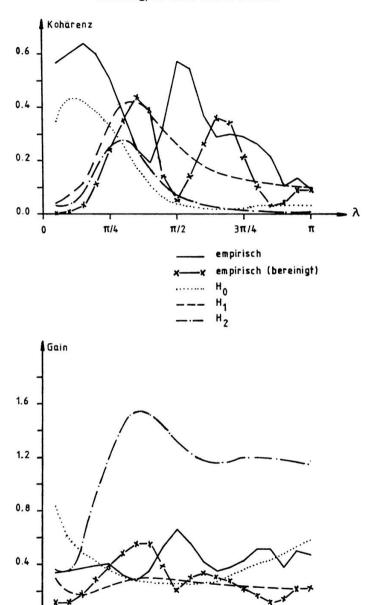


Schaubild 2: Kohärenz und Gain zwischen der Rendite festverzinslicher Wertpapiere und dem Termingeldsatz

 $3\pi/4$

π

π/2

0

π/4

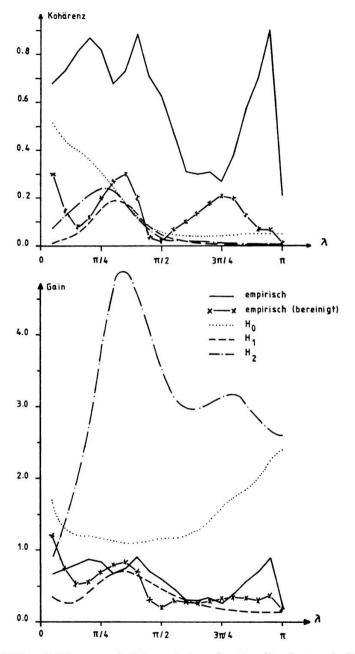


Schaubild 3: Kohärenz und Gain zwischen der Rendite festverzinslicher Wertpapiere und dem Spareinlagensatz

Die Tabellen 2-4 enthalten die entsprechenden lag-Verteilungen²⁰, die für die empirisch berechneten Versionen zwei Grundtypen der "Kausalitätsbeziehungen" besitzen; einen direkten Zusammenhang zwischen dem Dreimonatsgeldsatz und der Rendite festverzinslicher Wertpapiere ohne nennenswerte feed-back-Effekte. Letztere sind jedoch besonders ausgeprägt bei dem Zusammenhang zwischen RSPE und RW, was angesichts des Umstandes, daß die Anpassungen des Sparzinses an die "Marktentwicklung" langsam erfolgt, verständlich ist. Sowohl H_0 als auch H_1 weisen eine gute Approximation im Vergleich zur geschätzten lag-Verteilung auf²¹. Beide erfassen jedoch nicht den geringfügigen feed-back für die Periode t+1; H_2 liefert dem theoretischen Ansatz gemäß Gleichung (8) mit a priori Restriktion entsprechend einen Koeffizienten für t von ungefähr 1. In keinem Fall resultiert die Hypothese effizienter Märkte in einer lag-Verteilung, die im Kontext des Modells der auf Grund der empirischen Spektralschätzung berechneten Verteilung ähnlich ist. Beim Termingeldzinssatz wird die feed-back-Relation am besten durch das Markt-Modell wiedergegeben, das allerdings einen vergleichsweise zu hohen direkten Einfluß aufweist. Während H_0 den Zusammenhang zwischen den unverzögerten Variablen RSPE und RW betont (wenngleich auch der feed-back-Effekt erfaßt wird), resultiert die Erwartungshypothese in einem sehr starken, dem empirischen Verlauf entsprechenden Gewicht für den Koeffizienten der Periode t+1. Die effiziente Markthypothese H_2 führt zu einer mit der empirischen Verteilung wenig übereinstimmenden Zinsstruktur zwischen diesen beiden Variablen.

Fassen wir zusammen: Der Verlauf von Kohärenz und Gain sowie die berechnete lag-Verteilung legen bei einem Vergleich mit den auf Grund der empirisch geschätzten Spektren ermittelten Maßen den Schluß nahe, die Erwartungstheorie (H_1) als die besser geeignete Hypothese zur Beschreibung der Zinsstruktur im Kontext des verwendeten Modells zu betrachten²².

²⁰ Zur Begründung der Rücktransformation in den Zeitbereich vgl. Anhang II.

 $^{^{21}}$ Im Vergleich zur "direkten" Schätzung gemäß Gleichung (5) ergibt sich jedoch ein wesentlich kleinerer Einfluß des Dreimonatsgeldsatzes auf den langfristigen Zinssatz. Während die Schätzwerte von (5) für den langfristigen Effekt $\overline{RW}=0.58$ \overline{RMON} implizieren, führt die Berücksichtigung simultaner Zusammenhänge zu einer Reduzierung des Einflusses auf weniger als die Hälfte, nämlich $\overline{RW}=0.18$ $\overline{RMON}.$ Vgl. dazu auch die Lösung für den steady state Effekt in Tabelle 5, der ebenfalls die wesentliche Reduzierung des Parameters aufzeigt.

Tabelle 2 ${\bf Alternative~lag-Verteilungen~f\"ur~die~Rendite}$ festverzinslicher Wertpapiere in Abhängigkeit vom Dreimonatsgeldsatz $RW_t = \sum_{ai} RMON_{t-i}$

j	empirisch	empirisch (bereinigt)	H_0	H ₁	H_2
- 2	- 0.022 (0.7)	- 0.042 (0.5)	- 0.038	- 0.018	- 0.089
– 1	0.080 (2.7)	0.086 (1.0)	- 0.045	- 0.021	- 0.080
0	0.174 (5.8)	0.186 (2.2)	0.159	0.156	0.954
1	- 0.040 (1.3)	- 0.040 (0.5)	- 0.114	- 0.004	- 0.003
2	0.055 (1.8)	-0.024 (0.3)	0.060	- 0.009	- 0.037

Tabelle~3 Alternative lag-Verteilungen für die Rendite festverzinslicher Wertpapiere in Abhängigkeit vom Termingeldsatz $RW_t = \sum a_i \, RTE_{t-i}$

j	empirisch	empirisch (bereinigt)	H_0	H ₁	H_2
- 2	- 0.151 (1.8)	- 0.145 (1.2)	0.027	- 0.040	- 0.079
- 1	0.221 (2.6)	0.152 (1.2)	0.116	0.012	0.010
0	0.265 (3.1)	0.158 (1.3)	0.344	0.216	1.040
1	- 0.072 (0.8)	0.034 (0.3)	- 0.057	- 0.058	- 0.329
2	0.053 (0.6)	0.013 (0.1)	0.140	- 0.030	- 0.266

²² Prima vista erscheint dies ein Widerspruch zu den Ergebnissen von H. König und J. Wolters [1970]. Zu bedenken bleibt jedoch, daß in der dort untersuchten Periode das Habenzinsabkommen andere Zusammenhänge zwischen den Zinssätzen zur Folge hatte. Vgl. dazu auch die für diese Periode unterschiedliche Spezifikation der Nachfrage- und Angebotsgleichungen des Modells im Anhang I.

Tabelle~4 Alternative lag-Verteilungen für die Rendite festverzinslicher Wertpapiere in Abhängigkeit vom Zinssatz für Spareinlagen $RW_t = \sum a_j~RSPE_{t-j}$

j	empirisch	empirisch (bereinigt)	H_0	H ₁	H ₂
– 2	- 0.049 (0.3)	0.119 (0.7)	0.210	0.074	0.622
- 1	0.433 (2.8)	0.360 (2.0)	0.475	0.336	1.480
0	0.377 (2.4)	0.180 (1.0)	0.965	0.058	1,440
1	0.000 (0.0)	0.058 (0.3)	- 0.801	- 0.117	- 2.340
2	0.038 (0.2)	0.010 (0.1)	0.388	- 0.072	- 0.053

Die wirtschaftspolitischen Konsequenzen der jeweiligen Spezifikation sind beträchtlich. Tabelle 5 enthält die Auswirkungen einer permanenten Erhöhung des Diskontsatzes um 1 Prozentpunkt auf die Rendite der festverzinslichen Wertpapiere auf Grund einer Simulation.

Tabelle 5

Auswirkungen einer permanenten Erhöhung
des Diskontsatzes um einen Prozentpunkt auf die Rendite
festverzinslicher Wertpapiere für alternative Hypothesen

Periode	H_0	H_1	H_2
1	0.048	0.106	0.570
2	0.116	0.193	0.982
3	0.158	0.223	1.047
4	0.155	0.219	0.914
5	0.126	0.212	0.776
6	0.094	0.217	0.719
7	0.070	0.232	0.731
8	0.053	0.249	0.763

Die Marktgleichgewichts-Version führt zu einer Zunahme des langfristigen Zinssatzes, die nach 3 Quartalen mit 0.158 Prozentpunkten ein Maximum aufweist, dann jedoch aus der "Eigendynamik" des Systems heraus immer kleiner wird, so daß langfristig das erhöhte Diskontsatzniveau keinen nennenswerten Effekt für die Rendite der festverzinslichen Wertpapiere besitzen würde. Die Erwartungshypothese weist dagegen einen nicht nur größeren "impact" auf, sondern ist auch durch eine weitere langfristige mit Schwankungen versehene Zunahme gekennzeichnet. Die Hypothese effizienter Märkte hingegen zeigt eine sehr schnelle Zunahme der Rendite, die sich dann nach 5 Quartalen auf einem etwas geringeren Niveau stabilisiert.

IV.

Der methodische Ansatz, die empirische Relevanz einer Hypothese über die Zinsstruktur nicht mit den üblichen "Fit-Kriterien" für eine isolierte Strukturgleichung²³ zu beurteilen, sondern auf Grund der dynamischen Eigenschaften des Systems, hat u.E. einige Vorzüge, auf die eingangs hingewiesen wurde24. Trotzdem existieren noch eine Vielzahl offener Probleme und Schwierigkeiten, die hier andeutungsweise skizziert werden sollen. Erstens, das Verfahren verlangt einen hohen Computerzeitaufwand. Zweitens, die Beurteilung der Relevanz der verschiedenen Hypothesen erfolgt unter der Annahme, die übrige Modellstruktur sei ausreichend und richtig spezifiziert. Es versteht sich von selbst, daß Fehlspezifikationen an anderer Stelle des Modells auch die Aussagen bezüglich der Angemessenheit der einen oder anderen Hypothese beeinträchtigen. Drittens scheint uns eine "symmetrische" Vorgehensweise eher angebracht als ein isolierter Austausch einer Strukturgleichung: Nichts spricht a priori dafür, auf einem Finanzmarkt beispielsweise rationales Verhalten zu unterstellen, auf anderen (im Modell enthaltenen) Märkten jedoch von Verhaltensweisen auszugehen, denen nicht notwendigerweise das Ausnützen aller Gewinnchancen zugrundeliegt. Und schließlich kann die empirische "Überlegenheit" der Erwartungsstrukturhypothese nicht zuletzt durch das inadäquate Datenmaterial bedingt sein. Die hier verwendete (offizielle) Rendite der festverzinslichen Wertpapiere ändert sich nicht nur auf Grund von Kursschwankungen bzw. Veränderungen des Couponsatzes, sondern auch durch die im Zeitablauf variierende Zusammensetzung in der Fällig-

²³ Vgl. z. B. die Vorgehensweise bei F. S. Mishkin [1978].

²⁴ Vgl. auch dazu die Ausführungen im Anhang II.

keitsstruktur. Der als Indikator für den "kurzfristigen" (Ein-Perioden-) Zinssatz herangezogene Dreimonatsgeldzinssatz ist andererseits durch kurzfristige Liquiditätsüberlegungen des Geschäftsbankensystems mitgeprägt, so daß die Annahme der Konstanz der Liquiditäts- oder Fälligkeitsprämie sicherlich von beiden Zinsreihen her gesehen problematisch ist²⁵.

Anhang I

Die Strukturgleichungen des folgenden Modells wurden²⁶ mit der zweistufigen Methode der kleinsten Quadrate für den Zeitraum 1961 I bis 1973 IV geschätzt. Wegen fehlender Freiheitsgrade wurden bei der Schätzung der ersten Stufe statt der exogenen Variablen 9 Hauptkomponenten benutzt. Die Berechnungen erfolgten mit dem Programm TSP (Time Series Processor, Version Febr. 1971).

(1) Nachfrage der Privaten nach Bargeld

$$\triangle$$
 BGP = 2.259 + 0.298 S_1 + 0.514 S_2 + 0.497 S_3
(4.3) (1.6) (3.2) (2.9)
- 0.317 BGP₋₁ - 0.346 \triangle BGP₋₁ + 0.066 YBSP
(6.6) (3.6) (8.1)
- 0.313 RTE
(5.5)
 $R^2 = 0.758$ DW = 1.5

(2) Nachfrage der Privaten nach Sichteinlagen

$$\triangle$$
 SEP = $-2.289 - 3.181 S_1 + 0.141 S_2 - 2.055 S_3$
(2.2) (3.7) (0.2) (3.8)
$$-0.569 SEP_{-1} + 0.196 \triangle SEP_{-1} + 0.257 YBSP$$
(6.7) (1.6) (7.4)
$$-0.976 RTE$$
(5.5)
$$R^2 = 0.917 \qquad DW = 1.7$$

²⁵ Das bestätigt auch eine auf Grund des Einmonatsgeldzinssatzes und dem Dreimonatsgeldzinssatz berechnete implizite "forward-rate", die nicht nur konjunkturelle Schwankungen aufweist, sondern auch vor allem in Phasen einer starken Liquiditätsanspannung innerhalb des Bankensystems zu negativen Liquiditätsprämien führt.

²⁶ Es handelt sich hierbei um eine neugeschätzte Version des Modells von H. König, W. Gaab und J. Wolters [1977], das insbesondere den Restriktionen über Substitutionseffekte von Zinssatzänderungen Rechnung trägt.

(3) Nachfrage der Privaten nach Termineinlagen

$$\varDelta \ TEP = -4.962 - 2.479 \, S_1 - 1.809 \, S_2 - 2.551 \, S_3 \\ (2.4) \quad (3.8) \quad (2.8) \quad (3.9)$$

$$-4.390 \, D_2 - 0.106 \, TEP_{-1} + 0.023 \, NW \\ (3.5) \quad (1.5) \quad (3.2)$$

$$+ 0.856 \, D_4 \cdot (RTE\text{-}RSPE) + 0.212 \, (RTE\text{-}\sum_{i=0}^{3} w_i \, (RAK + \varDelta \, P/P)_{-i}) \\ (2.7) \quad (1.2)$$

$$w_i = \{0.4, \ 0.3, \ 0.2, \ 0.1\} \\ R^2 = 0.749 \qquad DW = 2.0$$

(4) Nachfrage der Privaten nach Spareinlagen

(5) Nachfrage der Privaten nach festverzinslichen staatlichen Wertpapieren und Bankschuldverschreiben

$$\begin{split} \varDelta \ WSP &= -\ 6.675 + 0.934\ S_1 + 0.062\ S_2 + 0.331\ S_1 \\ (4.7) \quad (2.8) \quad (0.2) \quad (1.0) \end{split}$$

$$-\ 0.194\ WSP_{-1} + 0.025\ NW + 1.053 \left(\sum\limits_{i=0}^{3}\ w_i\ RW_{-i} - RSPE\right) \\ (4.9) \quad (5\underline{,}8) \quad (3.1) \end{split}$$

$$w_i &= \{0.4,\ 0.3,\ 0.2,\ 0.1\}$$

$$R^2 &= 0.714 \qquad DW = 1.6$$

(6) Nachfrage der Privaten nach kurzfristigen Krediten

13 Kredit und Kapital 2/1980

(7) Nachfrage der Privaten nach langfristigen Krediten

$$\begin{split} \varDelta \ KLP &= -3.658 - 2.351 \, S_1 - 0.538 \, S_2 - 0.626 \, S_3 - 0.140 \, KLP_{-1} \\ &(3.2) \quad (5.2) \quad (1.2) \quad (1.4) \quad (4.0) \\ &+ 0.479 \, \varDelta \ KLP_{-1} + 0.034 \, NW - 0.128 \left(\sum\limits_{i=0}^{3} \, w_i \, RKL_{-i} - \sum\limits_{i=0}^{7} \, w_i' (RAK + \varDelta \, P/P)_{-i} \right) \\ & w_i = \{0.4, \, 0.3, \, 0.2, \, 0.1\} \\ & w_i' = \{0.2222, \, 0.1944, \, 0.1667, \, 0.1389, \, 0.1111, \\ &0.0833, \, 0.0556, \, 0.0278\} \\ & R^2 = 0.876 \qquad DW = 1.8 \end{split}$$

(8) Nachfrage der Privaten nach Wohnungsbaukrediten

(9) Nachfrage der Kreditinstitute nach Schatzwechseln und unverzinslichen Schatzanweisungen

$$\begin{split} \varDelta \, SWUMB &= -2.673 - 0.489 \, SWUMB_{-1} + 0.138 \, \varDelta \, SWUMB_{-1} \\ &\quad (1.1) \quad (4.6) \quad (1.0) \end{split} \\ &\quad + 0.033 \, (E\text{-}MR) - 0.074 \, KK + 64.732 \, (UER + KONT\text{-}RFK)/(E\text{-}MR)_{-1} \\ &\quad (3.1) \quad (2.7) \quad (2.3) \end{split} \\ &\quad + 0.556 \, (RUSA_{-1} - RDISL) + 0.298 \, (RUSA\text{-}REURO \, (1 + (2.6) \quad (3.3)) \\ &\quad + DKP \cdot RSETE) - SWAP) \\ &\quad R^2 = 0.553 \quad DW = 1.9 \end{split}$$

(10) Nachfrage der Kreditinstitute nach Diskont- und Lombardkrediten

$$\triangle$$
 RFK = $-1.193 - 4.986$ RFK $_{-1}$ /KONT $_{-1} + 1.933$ D₁
(2.8) (6.2) (1.5)

- 0.386 \triangle (E-MR-K) - 1.064 (RDISL-REURO-SWAP)
(6.7) (6.7)

- 0.566 (RDISL-RKK)
(2.9)

 $R^2 = 0.844$ DW = 1.9

(11) Kurzfristige Nettoposition der Kreditinstitute gegenüber dem Ausland

$$DEVKB = -0.830 + 3.566 S_1 + 4.524 S_2 + 3.359 S_3 + 0.132 (E-MR)$$

$$(0.9) \quad (5.2) \quad (7.0) \quad (5.2) \quad (11.1)$$

$$-0.509 KK + 6.117 DD + 0.848 (REURO (1 + DKP \cdot RSETE)$$

$$(14.1) \quad (6.6) \quad (4.7)$$

$$+ SWAP - RDISL)$$

$$R^2 = 0.927 \quad DW = 1.7$$

(12) Nachfrage der Kreditinstitute nach festverzinslichen staatlichen Wertpapieren und Bankschuldverschreibungen

$$\varDelta \ WSB = - \ 0.846 + 0.943 \ S_1 + 0.730 \ S_2 + 0.577 \ S_3 - 0.096 \ WSB_{-1}$$

$$(1.8) \quad (3.6) \quad (2.7) \quad (2.3) \quad (2.7)$$

$$- \ 0.507 \ \varDelta \ WSB_{-1} + 0.074 \ (E - MR) - 0.145 \ KK + 0.902 \ (0.125 \ \sum\limits_{i=0}^{7} RW_{-i} - RKL)$$

$$(3.7) \quad (6.3) \quad (7.3) \quad (6.1)$$

$$R^2 = 0.755 \quad DW = 2.1$$

(13) Angebot der Kreditinstitute von Bankschuldverschreibungen

$$egin{aligned} \varDelta \; SCHU &= 8.229 - 0.268 \; SCHU_{-1} - 0.046 \; (E-MR) \\ &(2.6) & (2.4) & (2.1) \\ &+ 0.166 \; KL - 2.089 \; RW \\ &(4.0) & (4.5) \\ &R^2 = 0.661 \;\;\;\; DW = 1.6 \end{aligned}$$

(14) Zinssatz für Termineinlagen

$$\begin{split} RTE &= -\ 0.678 + 0.759\ D_3 \cdot RDISL + 1.605\ D_4 \cdot RK \\ &(1.2) \quad (5.0) \qquad (19.6) \\ \\ &- 23.369\ D_4 \cdot TE/(E-MR)_{-1} + 0.518\ u_{-1} \\ &(7.5) \qquad (4.3) \\ \\ R^2 &= 0.989 \qquad DW = 2.1 \end{split}$$

(15) Zinssatz für Spareinlagen

$$\begin{split} RSPE &= 2.550 + 0.309 \, D_3 \cdot RDISL + 0.437 \, D_4 \cdot RSPE_{-1} \\ &\quad (9.6) \quad (4.3) \quad (4.1) \\ &\quad + 0.272 \, D_4 \cdot RK - 3.223 \, D_4 \cdot SPE/(E - MR)_{-1} + 0.521 \, u_{-1} \\ &\quad (4.9) \quad (4.2) \quad (4.4) \end{split}$$

(16) Zinssatz für kurzfristige Kredite

$$RKK = -2.631 + 0.472 RKK_{-1} + 0.326 RMON$$

$$(2.5) (8.6) (7.8)$$

$$+ 0.176 REURO + 5.948 KK/(SE + TE)_{-1}$$

$$(4.7) (3.0)$$

$$R^{2} = 0.979 DW = 1.9$$

(17) Zinssatz für langfristige Kredite

$$RKL = -2.054 + 0.194 S_1 + 0.164 S_2 + 0.196 S_3$$

$$(1.1) (2.7) (2.8) (3.8)$$

$$+ 0.342 RKL_{-1} - 0.143 RKL_{-2} + 0.483 RKK$$

$$(3.9) (2.0) (9.6)$$

$$+ 4.897 KL/(E - MR)_{-1} + 0.666 u_{-1}$$

$$(2.5) (6.4)$$

$$R^2 = 0.992 DW = 2.0$$

(18) Zinssatz für Dreimonatsgeld

$$RMON = 2.555 - 1.562 S_1 - 0.148 S_2 - 0.736 S_3$$
 $(3.1) \quad (5.1) \quad (0.5) \quad (2.5)$
 $+ 0.770 RMON_{-1} - 0.400 \quad RMON_{-2} + 0.687 \; RDISL$
 $(5.6) \quad (3.5) \quad (4.8)$
 $- 25.713 \; (UER + KONT - RFK)/(E - MR)_{-1}$
 (3.4)
 $R^2 = 0.937 \quad DW = 2.0$

(19) Monetäre Basis

$$BGP + MR + UER = GOLD - DEVKB + SWUMZB + WPZB - EPBU - NPOSST + RFK + REST$$

(20) Mindestreserven

$$MR = RSSE \cdot (SEP + SEST) + RSTE \cdot TEP + RSSPE \cdot SPE$$

(21) Gleichgewichtsbedingung des Marktes für festverzinsliche staatliche Wertpapiere und Bankschuldverschreibungen

$$WSP + WSB + WPZB + WSA = SCHU + WP$$

- (22) SWUMB + SWUMZB = SWUMG
- (23) SE = SEP + SEST

- (24) TE = TEP + TEST
- (25) E = SE + TE + SPE
- (26) KK = KKP + KKST
- (27) KL = KLP + KLPW + KLST
- (28) K = KK + KL
- (29) $RK = (RKK \cdot KK + RKL \cdot KL)/K$
- (30) $RSETE = (RSSE \cdot (SEP + SEST) + RSTE \cdot TEP)/(SEP + SEST + TEP)$
- (31) M1 = BGP + SEP + SEST + EPBU

Variablenliste

BGP	Bargeldumlauf (ohne Kassenbestände der Kreditinstitute)
*D ₁	Dummy-Variable, 1 für 1969 (4), 0 sonst
*D ₂	Dummy-Variable, 1 für 1969 (4) - 1973 (4), 0 sonst
*D ₃	Dummy-Variable, 1 für 1961 (1) - 1967 (1), 0 sonst
$*D_4$	Dummy-Variable, 1 für 1967 (2) - 1973 (4), 0 sonst
*DD	Dummy-Variable für Maßnahmen der Deutschen Bundesbank zur Abwehr internationaler Kapitalzuflüsse; 0.5 für 1961 (1) bis 1962 (2), 0.25 für 1962 (3) - 1963 (4), 0.5 für 1964 (1) - 1968 (3), 1.0 für 1968 (4) - 1969 (1), 0.5 für 1969 (2) - 1969 (4), 0 für 1970 (1) bis 1971 (1), 0.5 für 1971 (2) - 1972 (1), 1.0 für 1972 (2) - 1973 (4)
DEVKB	Kurzfristige Nettoposition inländischer Kreditinstitute gegen- über dem Ausland, Mrd. DM
*DKP	Dummy-Variable für das Kompensationsprivileg, 1 für 1961 (2) bis 1966 (4), 0 sonst
E	Gesamteinlagen inländischer Nichtbanken bei Kreditinstituten, Mrd. ${\tt DM}$
*EPBU	Sichteinlagen privater inländischer Nichtbanken bei der Deutschen Bundesbank, Mrd. DM
*GOLD	Gold- und Devisenbestände der Deutschen Bundesbank, Mrd. \mathtt{DM}
K	Gesamtkredite inländischer Kreditinstitute an inländische Nichtbanken, Mrd. DM
KK	Kurzfristige Kredite inländischer Kreditinstitute an inländische Nichtbanken, Mrd. DM
KKP	Kurzfristige Kredite inländischer Kreditinstitute an private inländische Nichtbanken, Mrd. DM

^{*} bezeichnet exogene Variable.

202	H. König, W. Gaab und J. Wolters
*KKST	Kurzfristige Kredite inländischer Kreditinstitute an inländische öffentliche Haushalte, Mrd. DM
KL	Langfristige Kredite (einschließlich Wohnungsbaukredite) in- ländischer Kreditinstitute an inländische Nichtbanken, Mrd. DM
KLP	Langfristige Kredite inländischer Kreditinstitute an private inländische Nichtbanken, Mrd. DM
KLPW	Wohnungsbaukredite inländischer Kreditinstitute an private inländische Nichtbanken, Mrd. DM
*KLST	Langfristige Kredite inländischer Kreditinstitute an inländische öffentliche Haushalte, Mrd. DM
*KONT	Rediskontkontingente, Mrd. DM
M 1	Geldvolumen, Mrd. DM
MR	Mindestreserven inländischer Kreditinstitute bei der Deutschen Bundesbank (Reservesoll), Mrd. DM
*NPOSST	Nettoposition inländischer öffentlicher Haushalte gegenüber der Deutschen Bundesbank, Mrd. DM
*NW	Vermögen privater inländischer Nichtbanken, Mrd. DM
*P	Preisindex für das Bruttosozialprodukt zu Marktpreisen, $1962 = 100$
*	$= (P_t - P_{t-4})/P_{t-4} \cdot 100$
*RAK	Aktienrendite, v.H.
*RDISL	Gewogener Durchschnitt aus Diskont- und Lombardsatz, v.H.
*REURO	Zinssatz für Dreimonatsgeld am Eurodollarmarkt, v.H.
RFK	Refinanzierungskredite der Deutschen Bundesbank an inländische Kreditinstitute, Mrd. DM
RK	Gewogener Durchschnitt aus den Zinssätzen für kurz- und langfristige Kredite (vgl. Gl. (29)), v.H.
RKK	Zinssatz für kurzfristige Kredite, v.H.
RKL	Zinssatz für langfristige Kredite, v.H.
RMON	Zinssatz für Dreimonatsgeld in Frankfurt a. M., v.H.
RSETE	Gewogener Durchschnitt aus den durchschnittlichen Mindest- reservesätzen für Sicht- und Termineinlagen (vgl. Gl. (30))
RSPE	Zinssatz für Spareinlagen, v.H.
*RSSE	Durchschnittlicher Mindestreservesatz für Sichteinlagen
*RSSPE	Durchschnittlicher Mindestreservesatz für Spareinlagen
*RSTE	Durchschnittlicher Mindestreservesatz für Termineinlagen
RTE	Zinssatz für Termineinlagen, v.H.
*RUSA	Abgabesatz der Deutschen Bundesbank für Offenmarktpapiere, v.H.
RW	Umlaufsrendite festverzinslicher inländischer Wertpapiere insgesamt, v.H.
$*S_i$	Saisondummies $(i = 1, 2, 3)$
~~	

institute, Mrd. DM

Umlauf an Bankschuldverschreibungen außerhalb der Kredit-

SCHU

SEP	Sichteinlagen privater inländischer Nichtbanken bei inländischen Kreditinstituten, Mrd. DM
*SEST	Sichteinlagen inländischer öffentlicher Haushalte bei inländischen Kreditinstituten, Mrd. DM
SPE	Spareinlagen inländischer Nichtbanken bei inländischen Kreditinstituten, Mrd. DM
*SWAP	Swapsatz (US \$/DM), v.H.
SWUMB	Schatzwechsel und unverzinsliche Schatzanweisungen im Bestand inländischer Kreditinstitute, Mrd. DM
*SWUMG	Umlauf an Schatzwechseln und unverzinslichen Schatzanweisungen, Mrd. DM
SWUMZB	Schatzwechsel und unverzinsliche Schatzanweisungen im Bestand der Deutschen Bundesbank, Mrd. DM
TEP	Termineinlagen privater inländischer Nichtbanken bei inländischen Kreditinstituten, Mrd. DM
*TEST	Termineinlagen inländischer öffentlicher Haushalte bei inländischen Kreditinstituten, Mrd. DM
UER	Überschußreserven inländischer Kreditinstitute (einschließlich Kassenbestände), Mrd. DM
*WP	Umlauf an festverzinslichen Wertpapieren inländischer öffentlicher Haushalte, Mrd. DM
*WPZB	Festverzinsliche Wertpapiere inländischer öffentlicher Haushalte im Bestand der Deutschen Bundesbank, Mrd. DM
*WSA	Bestand an festverzinslichen Wertpapieren im Ausland, Mrd. DM
WSB	Festverzinsliche Wertpapiere inländischer öffentlicher Haushalte und Bankschuldverschreibungen im Bestand inländischer Kreditinstitute, Mrd. DM
WSB	Festverzinsliche Wertpapiere inländischer öffentlicher Haushalte und Bankschuldverschreibungen im Bestand privater inländischer Nichtbanken, Mrd. DM
*YBSP	Bruttosozialprodukt zu Marktpreisen, Mrd. DM

Anhang II

Im folgenden sollen die analytischen Ansätze zur Bestimmung der stochastischen dynamischen Eigenschaften linearer bzw. linearisierter geschätzter ökonometrischer Modelle kurz dargestellt werden²⁷. Hierbei werden die ursprünglich von G. C. Chow [1968] und E. P. Howrey [1971] entwickelten Methoden, die sich auf feste exogene Variable beziehen, erweitert, um auch den Einfluß der exogenen Variablen auf das dynamische Verhalten eines ökonometrischen Modelles behandeln zu können.

²⁷ Vgl. für das folgende insbesondere J. Wolters [1977].

Ohne Beschränkung der Allgemeinheit läßt sich die Strukturform eines linearen dynamischen ökonometrischen Modells als ein System von Differenzengleichungen erster Ordnung mit konstanten Koeffizienten schreiben:

(1)
$$A_0 Y(t) = A_1 Y(t-1) + \sum_{j=0}^{s} B_j X(t-j) + U(t)$$
, mit

Y mx1 Vektor der endogenen Variablen, X nx1 Vektor der exogenen Variablen,

U mx1 Vektor der Residuen (für nichtstochastische Gleichungen

stehen Nullen),

 A_0, A_1 mxm Koeffizientenmatrizen und mxn Koeffizientenmatrizen.

Es gelten folgende Annahmen:

- (1) A₀ ist regulär.
- (2) Die geschätzten Koeffizienten sind feste Größen²⁸.
- (3) Das Modell ist stabil²⁹.
- (4) Alle Residuen sind reine Zufallsprozesse mit Erwartungswert Null und Varianz-Kovarianzmatrix Σ_{IJ}^{30} .
- (5) Alle exogenen Variablen sind unabhängig von den Residuen. Sie setzen sich additiv zusammen aus einem nx1 Vektor beschränkter deterministischer Funktionen ξ (t) und einem nx1 Vektor schwach stationärer stochastischer Prozesse V (t) mit der nxn Spektralmatrix F_V (λ).

Die reduzierte Form lautet unter Berücksichtigung des lag-Operators L, der definiert ist als L x(t) = x(t-1)

²⁸ Dies ist eine häufig getroffene Annahme bei der Auswertung ökonometrischer Modelle, d. h. man betrachtet die Punktschätzungen als Äquivalent für die bei der theoretischen Modellformulierung getroffene Annahme, daß die wahren Parameterwerte konstante Größen sind. Ansätze zur Berücksichtigung stochastischer Variationen in den geschätzten Regressionskoeffizienten bei der Spektraldarstellung ökonometrischer Modelle finden sich bei *J. Wolters* [1978]. Hier zeigt sich in einer Monte Carlo Studie, daß hinsichtlich der Periodenlängen keine signifikanten Unterschiede festzustellen sind.

²⁹ Existieren Eigenwerte betragsmäßig größer als Eins, dann implizieren diese für reelle Wurzeln einen Trend und für konjugiert-komplexe Wurzeln explosive Zyklen in den Zeitpfaden der endogenen Variablen. Auch in diesem Falle liefert die Spektraldarstellung noch eine sinnvolle Beschreibung der Prozesse, wenn man die Spektren so interpretiert, daß sie nicht nur die Abweichungen von den Trends, die durch die exogenen Variablen gegeben werden, beschreiben, sondern auch von den Trends, die durch die Instabilität erzeugt werden. Siehe hierzu G. C. Chow und R. E. Levitan [1969]. Einen anderen Ansatzpunkt liefert in diesem Falle das Konzept des evolutionären Spektrums.

³⁰ Die Residuen können auch schwach stationären Vektorprozessen folgen.

(2)
$$Y(t) = A Y(t-1) + B(L) X(t) + W(t)$$
 mit
$$A := A_0^{-1} A_1, B(L) := A_0^{-1} \sum_{j=0}^{s} B_j L^j, W(t) := A_0^{-1} U(t).$$

Beginnend mit einem beliebigen Anfangswert für $t = t_0$ läßt sich aus (2) durch sukzessive Substitution die allgemeine Lösung bestimmen:

(3)
$$Y(t) = A^{t-t_0} Y(t_0) + \sum_{j=0}^{t-t_0-1} A^j \{B(L) X(t-j) + W(t-j)\}.$$

Die Lösung des homogenen Systems A^{t-t_0} Y (t_0) können wir mit Hilfe der $g \leq m$ von Null verschiedenen Eigenwert r_1, \ldots, r_g der Vielfachheit Eins, umformen

(4)
$$A^{t-t_0} Y(t_0) = c_1 r_1^{t-t_0} y_{01} + \ldots + c_g r_g^{t-t_0} y_{0g},$$

mit c_1, \ldots, c_g beliebigen Konstanten und y_{01}, \ldots, y_{0g} den Eigenvektoren von A. Somit bestimmen die Eigenwerte eindeutig die Form und die Art des Einschwingvorganges.

Die Lösungen mit stochastischen Anfangsbedingungen erhalten wir wegen der Stabilitätsannahme durch Grenzübergang für $t_0 \rightarrow -\infty$:

(5)
$$Y(t) = \sum_{j=0}^{\infty} A_{j} \{B(L) X(t-j) + W(t-j)\}$$
bzw.
$$Y(t) = T(L) \{B(L) X(t) + W(t)\}$$
mit
$$T(L) := \sum_{j=0}^{\infty} A^{j} L^{j} = (I - AL)^{-1}.$$

Die Form dieser steady state Lösung, d. h. der Lösung, die sich ergibt, wenn der Einschwingvorgang abgeklungen ist, läßt sich nicht direkt aus den Eigenwerten ablesen, da es sich hier um Linearkombinationen von exogenen Variablen und Residuen handelt. Daher geben auch die Eigenwerte keine ausreichende Information über das Schwingungsverhalten der stochastischen Lösung. Die Existenz von konjungiert-komplexen Eigenwerten garantiert nicht, daß die stochastische Lösung Schwingungen mit den entsprechenden Periodenlängen aufweist, vielmehr gilt i. a., daß Zyklen mit anderen Periodizitäten auftreten, oder daß überhaupt keine Schwingungen vorhanden sind. Umgekehrt ist es möglich, daß ein System, das nur positive Eigenwerte besitzt, bei Berücksichtigung der Restgrößen Zyklen erzeugt.

Die konjunkturellen Bewegungen der endogenen Variablen werden durch den stochastischen Teil der steady state Lösung (5') beschrieben:

(6)
$$Y^{s}(t) = T(L) \{B(L) V(t) + W(t)\}.$$

Dies ist eine lineare zeitinvariante Transformation der beiden unabhängigen Prozesse V(t) und W(t) in den Prozeß $Y^s(t)$. Wegen Annahme (4) besitzt W(t) die nxn Spektralmatrix $\Sigma_W/2\pi$ mit $\Sigma_W:=A_0^{-1}\ \Sigma_UA_0'^{-1}$. Die nxn Spektralmatrix des Prozesses $Y^s(t)$ lautet dann³1:

(7)
$$F_{Y}(\lambda) = T(e^{-i\lambda}) \{B(e^{-i\lambda}) F_{V}(\lambda) B'(e^{i\lambda}) + \sum_{W} 2\pi\} T'(e^{i\lambda})$$

$$\text{mit } i^{2} = -1 \text{ und } 0 \leq \lambda \leq \pi.$$

Unter der Annahme, daß X(t) rein deterministisch ist, d. h. $V(t) \equiv 0$, vereinfacht sich dieser Ausdruck zu³²

(8)
$$F_Y(\lambda) = \frac{1}{2\pi} T(e^{-i\lambda}) \Sigma_W T'(e^{i\lambda}).$$

Die Hauptdiagonalglieder $f_{jj}(\lambda)$ von $F_Y(\lambda)$ enthalten die Spektren der j-ten endogenen Variablen³³. Diese Spektren beschreiben in termini der Varianzen und Periodenlängen die zyklischen Eigenschaften der Zeitpfade, die impliziert durch die stochastischen Elemente des Systems, die Abweichungen der endogenen Variablen von ihrer Trendentwicklung darstellen. Die (j,k)-ten Elemente $f_{jk}(\lambda)$ von $F_Y(\lambda)$ mit $j \neq k$ geben die Kreuzspektren zwischen den j-ten und den k-ten endogenen Variablen an. Da das Kreuzspektrum $f_{jk}(\lambda)$, das den komponentenweisen Zusammenhang zwischen der j-ten und k-ten endogenen Variablen beschreibt, i. a. komplexwertig ist, werden zur Interpretation dieses Zusammenhanges reelle Größen abgeleitet. Der Gain

(9)
$$g_{jk}(\lambda) = \frac{|f_{jk}(\lambda)|}{f_{ji}(\lambda)}$$

gibt an, wie die Amplituden des j-ten Prozesses multipliziert werden müssen, um diejenigen des k-ten Prozesses zu erhalten. Diese Größe ist dem Betrag des Regressionskoeffizienten vergleichbar. Die Kohärenz

³¹ Vgl. z. B. L. H. Koopmans [1974, p. 129 ff.].

 $^{^{32}}$ Diese Formel liegt auch dem verwendeten FORTRAN-Programm TRANSF zugrunde. Die Spektralmatrix wird an den M+1 Frequenzen $\lambda_j=\pi\,j/M$, $j=0,1,\ldots,M$ durch Inversion der komplexen Matrix $(I-Ae^{-i\lambda})$ berechnet. 33 Zu den Eigenschaften und Interpretationen von Spektren und Kreuzspektren siehe z. B. H. König und J. Wolters [1972].

(10)
$$K_{jk}(\lambda) = \frac{|f_{jk}(\lambda)|^2}{f_{jj}(\lambda) f_{kk}(\lambda)}$$

liefert ein Maß für den stochastischen Zusammenhang zwischen den entsprechenden Komponenten der j-ten und k-ten endogenen Variablen. Sie entspricht dem Quadrat des Korrelationskoeffizienten. Die lead-lag Beziehungen zwischen entsprechenden Komponenten werden durch den Phasenwinkel

(11)
$$\varphi_{jk}(\lambda) = \arctan \frac{-\operatorname{Im} f_{jk}(\lambda)}{\operatorname{Re} f_{jk}(\lambda)}$$

beschrieben. Die Auswertung dieser Größe ist i. a. schwierig, da (i) wegen der Periodizität der Arcustangensfunktion der Phasenwinkel ohne zusätzliche Information keine eindeutigen Aussagen über das gegenseitige Vor- oder Nacheilen zweier Reihen gibt, (ii) eine komponentenweise Rücktransformation des Phasenwinkels in den Zeitbereich nur dann sinnvoll interpretiert werden kann, wenn zwischen beiden Reihen eine konstante Zeitverschiebung vorliegt³⁴ und (iii) der Phasenwinkel bei Vorliegen von feedback-Beziehungen keine Aussagen mehr liefert³⁵.

Aus diesen Gründen wollen wir die lead-lag- und Kausaleigenschaften zwischen zwei endogenen Variablen y_i und y_k durch die zwischen ihnen bestehende zweiseitige lag-Verteilung

(12)
$$y_{j}(t) = \sum_{\tau=-\infty}^{\infty} a(\tau) y_{k}(t-\tau) + u(t)$$

beschreiben. Hierbei sei u(t) ein von $y_k(t)$ unabhängiger stationärer Prozeß mit Erwartungswert Null. Die Prozesse $y_j(t)$ und $y_k(t)$ seien stationär. Dies ist hier gewährleistet, da die $y_j(t)$ und $y_k(t)$ die stochastischen steady state Lösungen der endogenen Variablen eines ökonometrischen Modells darstellen. Die Koeffizienten $a(\tau)$ lassen sich durch die Spektren und Kreuzspektren von y_j und y_k berechnen. Die Transformation von (12) in den Frequenzbereich liefert³⁶

(13)
$$f_{ik}(\lambda) = A(\lambda) f_{ij}(\lambda)$$

mit

(14)
$$A(\lambda) = \sum_{\tau=-\infty}^{\infty} a(\tau) e^{-i\lambda\tau}, (i^2 = -1).$$

³⁴ Vgl. hierzu J. C. Hause [1971].

³⁵ Vgl. hierzu C. W. J. Granger [1969].

³⁶ Vgl. hierzu und für das folgende J. Wolters [1973].

Setzen wir (14) in (13) ein, so folgt

(15)
$$\sum_{\tau=-\infty}^{\infty} a(\tau) e^{-i\lambda\tau} = f_{jk}(\lambda)/f_{jj}(\lambda).$$

Die Auflösung von (15) nach $a(\tau)$ ergibt

(16)
$$a(\tau) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f_{jk}(\lambda)/f_{jj}(\lambda) e^{i\lambda\tau} d\lambda$$
$$\tau = \dots -1, 0, 1, 2, \dots$$

Die Formel (16) können wir auch dann zur Bestimmung der Koeffizienten in der lag-Verteilung (12) anwenden, wenn die Spektralgrößen nicht theoretisch gegeben sind, sondern konsistent geschätzt werden. Dieser Ansatz ist in der Literatur als das Hannan'sche ineffiziente Verfahren bekannt. Es handelt sich um ein nichtparametrisches Verfahren zur Schätzung verteilter lag-Modelle, das folgende Vorteile besitzt: Die Schätzungen sind auch bei Autokorrelation in den Restgrößen konsistent, es wird a priori keine funktionale Form für die Koeffizienten der lag-Verteilung unterstellt und die Berechnung dieser Koeffizienten ist von der gewählten maximalen lag-Länge unabhängig. Die Darstellung (12) gibt zusätzlich noch Auskunft, ob zwischen $y_i(t)$ und $y_k(t)$ eine feedback-Beziehung vorliegt, da in diesem Falle, wie C.A.Sims [1972] gezeigt hat, die lag-Verteilung zweiseitig ist.

Die Anwendung dieser Methoden auf eine für den Zeitpunkt 1967 II linearisierte Form des geschätzten ökonometrischen Modells für den Geldsektor der Bundesrepublik Deutschland führt bei Reduktion auf die Form (1) für die endogenen Variablen auf ein System der Ordnung 41. Bei Berücksichtigung der exogenen Größen müßten wir noch zusätzlich 23 Variablen, die wir beispielsweise entsprechend Annahme (5) durch Zeittrends und ARMA-Ansätze modellieren könnten, in die Analyse mit einbeziehen. Da dies einen enormen zusätzlichen Rechenaufwand bedeuten würde, werden wir nur entsprechend (8) die spektralen Größen für den endogenen Teil berechnen. Um zu zeigen, wie sensitiv die Ergebnisse für die aus dem Modell abgeleiteten Zinsstrukturgleichungen bei Vernachlässigung der exogenen Variablen sind, wollen wir folgendes Beispiel untersuchen:

$$(17) \quad \begin{bmatrix} 1 & -a_2 \\ -b_2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_1 & 0 \\ 0 & b_1 \end{bmatrix} \begin{bmatrix} y_{1,-1} \\ y_{2,-1} \end{bmatrix} + \begin{bmatrix} a_3 \\ 0 \end{bmatrix}^x + \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\text{mit } 0 \leq a_1, b_1 \leq 1, \ 0 \leq a_2, b_2, \ 0 \leq a_3 \ .$$

 u_1 und u_2 sind reine Zufallsprozesse mit Varianz-Kovarianz-Matrix Σ und x besitzt das Spektrum $f_x(\lambda)$. (17) ist geeignet, um aufgrund der geschätzten Modellstruktur den Zusammenhang zwischen dem Wertpapierzinssatz einerseits und dem Geldmarktsatz bzw. dem Zinssatz für Spareinlagen bzw. dem Zinssatz für Termineinlagen andererseits zu beschreiben, wenn nur die Haupteinflüsse, d. h. die Zinseinflüsse berücksichtigt werden. In diesem Fall kann (17) sogar auf ein rekursives System, d. h. $a_2=0$ und $a_{12}=0$ vereinfacht werden. Zunächst wollen wir aber die Spektraldarstellung für das simultane Modell ableiten. Wegen (7) gilt

(18)
$$F_{Y}(\lambda) = \frac{1}{|A(\lambda)|^{2}} \begin{bmatrix} 1 - b_{1} e^{-i\lambda} & a_{2} \\ b_{2} & 1 - a_{1} e^{-i\lambda} \end{bmatrix}.$$

$$\left\{ \begin{bmatrix} a_{3} \\ 0 \end{bmatrix} f_{x}(\lambda) (a_{3} 0) + \frac{1}{2\pi} \begin{bmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2} \end{bmatrix} \right\}.$$

$$\begin{bmatrix} 1 - b_{1} e^{i\lambda} & b_{2} \\ a_{2} & 1 - a_{1} e^{i\lambda} \end{bmatrix}$$
mit
$$|A(\lambda)|^{2} = |(1 - a_{1} e^{-i\lambda}) (1 - b_{1} e^{-i\lambda}) - a_{2} b_{2}|^{2}.$$

Hieraus folgt

(19)
$$f_{11}(\lambda) = \frac{1}{2\pi |A(\lambda)|^2} \{ V(\lambda, a_3) (1 + b_1^2 - 2 b_1 \cos \lambda) + 2 \sigma_{12} a_2 (1 - b_1 \cos \lambda) + \sigma_2^2 a_2^2 \},$$

(20)
$$f_{22}(\lambda) = \frac{1}{2\pi |A(\lambda)|^2} \left\{ \sigma_2^2 (1 + a_1^2 - 2 a_1 \cos \lambda) + 2 \sigma_{12} b_2 (1 - a_1 \cos \lambda) + b_2^2 V(\lambda, a_3) \right\},$$

(21)
$$f_{12}(\lambda) = \frac{1}{2\pi |A(\lambda)|^2} \{b_2 V(\lambda, a_3) (1 - b_1 e^{-i\lambda}) + a_2 b_2 \sigma_{12} + \sigma_{12} (1 - a_1 e^{i\lambda}) (1 - b_1 e^{-i\lambda}) + \sigma_2^2 a_2 (1 - a_1 e^{i\lambda}) \}$$
mit
$$V(\lambda, a_2) = 2\pi a_2^2 f_{\pi_1}(\lambda) + \sigma_1^2.$$

Unterstellen wir ein rekursives System ($a_2 = 0$, $\sigma_{12} = 0$), so gilt für den Gain wegen (9), (19) und (21)

(22)
$$g_{12}(\lambda) = b_2 (1 + b_1^2 - 2 b_1 \cos \lambda)^{-\frac{1}{2}}.$$

Somit zeigt sich, daß in diesem Spezialfall des rekursiven Modells der Gain unabhängig von der exogenen Variablen ist und wir somit immer das richtige Ergebnis erhalten.

Die Berechnung der Kohärenz unter der Annahme des rekursiven Modells führt wegen (10) und (19), (20) und (21) auf

(23)
$$K(\lambda) = \left(1 + \frac{\sigma_2^2}{b_2^2} \cdot \frac{1 + a_1^2 - 2 a_1 \cos \lambda}{\sigma_1^2 + 2 \pi a_3^2 f_x(\lambda)}\right)^{-1}.$$

Wird in (23) der Einfluß der exogenen Variablen vernachlässigt, d. h. $a_3=0$, dann wird die Kohärenz zu klein ausgewiesen. Die Vernachlässigung der exogenen Variablen wird sich um so stärker bemerkbar machen, je größer der Wert von a_3 ist. Wird entsprechend C.W.J. Granger [1966] das für ökonomische Variablen typische Spektrum unterstellt, d. h. mit Ausnahme von eventuellen Saison- und Konjunkturkomponenten ein für steigende Frequenzen monoton fallender Verlauf des Spektrums mit viel spektraler Masse im Niederfrequenzbereich, so zeigt sich aus (23), daß sich die Unterschätzung der Kohärenz bei Vernachlässigung der exogenen Variablen besonders stark im Niederfrequenzbereich auswirkt.

Demgegenüber liefert der Fall des triangulären Systems ($a_2 = 0$, $\sigma_{12} \neq 0$) für die Kohärenz keine eindeutigen Aussagen mehr. Es ergibt sich

(24)
$$K(\lambda) = \frac{B(\lambda, a_3) + \frac{\sigma_{12}^2}{V(\lambda, a_3)}}{B(\lambda, a_3) + \sigma_2^2}$$
 mit
$$B(\lambda, a_3) = \frac{b_2}{1 + a_2^2 - 2a_1\cos\lambda} [b_2 V(\lambda, a_3) + 2\sigma_{12}(1 - a_1\cos\lambda)].$$

Da hier der Zähler aus einem in a_3 monoton wachsendem und monoton fallendem Teil besteht, hängt die Richtung der Verzerrung von den Größenordnungen der Parameter ab.

Der Gain läßt sich im triangulären Modell darstellen als

(25)
$$g_{12}(\lambda) = (1 + b_1^2 - 2 b_1 \cos \lambda)^{-\frac{1}{2}} \cdot \left[b_2^2 + \frac{2 b_2 \sigma_{12}}{V(\lambda, a_3)} (1 - a_1 \cos \lambda) + \frac{\sigma_{12}^2}{V^2(\lambda, a_3)} (1 + a_1^2 - 2 a_1 \cos \lambda) \right]^{\frac{1}{2}}.$$

Hier ergibt sich eindeutig eine Überschätzung des Gains bei Vernachlässigung der exogenen Variablen. Diese Überschätzung ist im Niederfrequenzbereich besonders stark, wenn die exogene Variable einen für ökonomische Variablen typischen Spektralverlauf aufweist.

Für den Fall des simultanen Modells können wir für Kohärenz und Gain keine allgemein gültigen Aussagen über die Richtung der Verzerrung machen.

Literatur

Ando, A. und F. Modigliani [1975]: Some Reflections of Describing Structures of Financial Sector, in: G. Fromm und L. Klein (Hrsg.), The Brookings Model: Perspective and Recent Developments, Amsterdam u. New York, p. 524 - 563. — Chow, G. C. [1968]: The Acceleration Principle and the Nature of Business Cycles, Quarterly Journal of Economics 82, p. 403 - 418. — Chow, G. C. und R. E. Levitan [1969]: Spectral Properties of Non-Stationary Systems of Linear Stochastic Difference Equations, Journal of the American Statistical Association 64, p. 581 - 590. — Ditzler, C., C. Koellreuter und P. Kugler [1978]: Quartalsmodell BRD IV, Diskussionspapier No. 19, Institut für Sozialwissenschaften und Institut für angewandte Wirtschaftsforschung, Universität Basel. — Fama, E. F. [1976]: Foundations of Finance: Portfolio Decisions and Securities Prices, New York. — Fassbender, H. [1973]: Zur Theorie und Empirie der Fristigkeitsstruktur der Zinssätze, Berlin. — Granger, C. W. J. [1966]: The Typical Spectral Shape of an Economic Variable, Econometrica 34, p. 150 - 161. — Granger, C. W. J. [1969]: Investigating Causal Relations by Econometric Models and Cross Spectral Methods, Econometrica 37, p. 424 - 438. Hause, J. C. [1971]: Spectral Analysis and the Detection of Lead-lag Relations, American Economic Review 61, p. 213 - 217. — Howrey, E. P. [1971]: Stochastic Properties of the Klein-Goldberger Modell, Econometrica 39, p. 73 - 87. — Jahnke, W. [1978]: Ökonometrisches Modell der Deutschen Bundesbank, Version 18/11/77. — Jüttner, D. J. P., G. M. Maddon und R. H. Tuckwell [1975]: Kapitalmarkteffizienz und Fristigkeitsstruktur der Zinssätze in der BRD, Konjunkturpolitik, 21. Jg., p. 170-181. — König, H. und J. Wolters [1970]: Über den Zusammenhang zwischen kurz- und langfristigem Zinssatz: Bemerkungen zur Modigliani-Sutch-Hypothese der Zinsstruktur, Jahrbücher für Nationalökonomie und Statistik, Band 183, Heft 6, p. 487 - 509. — König, H. und J. Wolters [1972]: Einführung in die Spektralanalyse ökonomischer Zeitreihen, Meisenheim a. Gl. — König, H., W. Gaab und J. Wolters [1977]: An Econometric Model of the Financial Sector of the Federal Republic of Germany, in: S. F. Frowen, A. S. Courakis und M. H. Miller (eds.), Monetary Policy and Economic Activity in West Germany, Surrey. — Koopmans, L. H. [1974]: The Spectral Analysis of Time Series, New York und London. — Kröger, J. und U. Westphal [1978]: Probleme bei der Konstruktion ökonometrischer Makro-Modelle, unveröffentlichtes Manuskript, Hamburg. — De Leeww, F. [1965]: A Modell of Financial Behaviour, in: J. Duesenberry, G. Fromm, L. Klein und E. Kuh (eds.), The Brookings Quarterly Econometric Model of the United States, Amsterdam, p. 464 - 530. — Martiensen, J. [1976]: The Monetary Sector of the German Economy, Empirical Economics 1, p.

189 - 216. — Mishkin, F. S. [1978]: Efficient-Market Theory: Implications for Monetary Policy, Brookings Papers on Economic Activity 3, p. 707 - 752. — Modigliani, F. und R. Sutch [1966]: Innovations in Interest Rate Policy, American Economic Review, Papers and Proceedings 56, p. 178 - 197. — Modigliani, F. und R. Sutch [1967]: Debt Management and the Term Structure of Interest Rates: An Empirical Analysis of Recent Experience, Journal of Political Economy 75, p. 569 - 589. — Modigliani, F. und R. J. Shiller [1973]: Inflation, Rational Expectations, and the Term Structure of Interest Rates, Economica 40, p. 12 - 43. — Nelson, C. R. [1972]: The Term-Structure of Interest Rates, New York und London. - Schildknecht, K. [1974]: An Econometric Model for the Financial Sector of Switzerland, Discussion Paper 5/74, Economics Research Unit, University of Pennsylvania. — Sims, C. A. [1972]: Money, Income and Causality, American Economic Review 62, p. 540 - 552. — Wolters, J. [1973]: Spektralanalytische Schätzung linearer dynamischer Systeme, Meisenheim a. Gl. — Wolters, J. [1978]: Dynamische Eigenschaften linearer ökonometrischer Modelle bei Berücksichtigung der stochastischen Elemente, in: J. Frohn (Hrsg.), Makroökonometrische Modelle für die Bundesrepublik Deutschland, Sonderheft zum ASTA, Heft 12, p. 161 - 184. — Wolters, J. [1977]: Methoden zur Bestimmung der dynamischen stochastischen Eigenschaften linearer ökonometrischer Modelle und deren Anwendung, Habilitationsschrift, erscheint 1980.

Zusammenfassung

Probleme der Modellierung der Zinsstruktur in makroökonometrischen Modellen

Für die Wirkungsweise geldpolitischer Maßnahmen ist in ökonometrischen Modellen die Modellierung der Zinsstruktur von besonderer Bedeutung. Hierzu gibt es im Prinzip die folgenden drei Ansätze: (i) die Marktgleichgewichtshypothese: Kurz- und langfristige Zinssätze werden über die Spezifikation der Angebots- und Nachfrageseite des jeweiligen Finanzmarktes bestimmt; (ii) die Erwartungshypothese der Zinsstruktur: Der langfristige Zinssatz ist ein gewogener Durchschnitt der Realisationen des kurzfristigen Zinssatzes in der Vergangenheit und (iii) die Hypothese effizienter Märkte: Der beste Prediktor für den langfristigen Zinssatz ist entweder dessen Realisation der Vorperiode oder der zu Beginn der Periode herrschenden kurzfristige Zinssatz zuzüglich einer Liquiditätsprämie. Da die Untersuchung der einzelnen Hypothesen ohne Berücksichtigung simultaner Zusammenhänge Nachteile aufweist. wird die jeweilige Hypothese die Zinsstruktur explizit in einem Modell für den finanziellen Sektor der Bundesrepublik Deutschland berücksichtigt. Ziel der Untersuchung ist es, unter Berücksichtigung aller Strukturrelationen des Modells diejenige Hypothese bezüglich des langfristigen Zinssatzes zu finden, die den beobachteten dynamischen Zusammenhängen am besten entspricht. Die Auswirkungen der einzelnen Hypothesen auf die dynamische Struktur des Modells werden anhand der Eigenwerte des deterministischen Systems und mit Hilfe der Spektralanalyse beurteilt. Die methodische Vorgehensweise ist in einem Anhang beschrieben. Es zeigt sich, daß — mit einigen Vorbehalten — die Erwartungshypothese der Zinsstruktur am besten die beobachteten Zusammenhänge approximiert.

Summary

Problems of Modelling Interest Rate Structures in Macroeconometric Models

In econometric models, the modelling of the interest rate structure is of special significance for the modus operandi of monetary policy measures. For such modelling we have, in principle, the three following approaches: (i) the market equilibrium hypothesis: short- and long-term interest rates are determined via specification of the supply and demand sides of the relevant financial market; (ii) the expectation hypothesis of the interest rate structure: The long-term interest rate is a weighted average of the effective short-term interest rates in the past, and (iii) the hypothesis of efficent markets: The best predictor for the long-term interest rate is either the effective rate in the preceding period or the short-term interest rate prevailing at the beginning of the period plus a liquidity premium. Since the examination of the individual hypotheses without allowing for simultaneous relationships has disadvantages, each hypothesis for the interest rate structure is taken into account explicitly in a model for the financial sector of the Federal Republic of Germany. The object of the study is to single out, taking all structural relationships of the model into account, that hypothesis relating to the longterm interest rate which is most compatible with the observed dynamic relationships. The effects of the various hypotheses on the dynamic structure of the model are assessed on the bassis of the characteristic values of the deterministic system and with the help of spectral analysis. The methodological provedure is described in the appendix. It proves — with some reservations that the expectation hypothesis corresponds mostly closely to the observed relationships.

Résumé

Problèmes de la modélisation de la structure des taux d'intéret dans les modèles macroéconomiques

Dans les modèles économétriques, la modélisation de la structure des taux d'intérêt est d'une importance particulière pour l'efficacité des mesures de politique monétaire. L'on dispose à cet effet des trois hypothèses suivantes: (i) la thèse de l'équilibre du marché: les taux d'intérêt à court et long terme se déterminent par la spécification de l'offre et de la demande des marchés financiers respectifs; (ii) la thèse de l'anticipation de la structure des taux: le taux à long terme est une moyenne pondérée des réalisations du taux à court terme dans le passé; et (iii) la thèse de marchés plus efficients: la meilleure prédiction du taux à long terme est fournie soit par sa réalisation au cours de la période antérieure, soit par le taux à court terme applicable au

14 Kredit und Kapital 2/1980

début de la période auquel s'ajoute une prime de liquidité. Comme l'analyse de chaque thèse sans prise en compte des connexités simultanées présente des inconvénients, l'on a inscrit explicitement chaque thèse de la structure des taux dans un modèle appliqué au secteur financier de l'Allemagne fédérale. La recherche a pour objet, compte tenu de toutes les relations structurelles du modèle, de découvrir la thèse du taux à long terme qui répond le mieux aux rapports dynamiques observés. Les répercussions des diverses thèses sur la structure dynamique du modèle sont appréciées à l'aide des valeurs propres au système déterministe et de l'analyse spectrale. La procédure méthodique est décrite dans une annexe. Il apparaît — avec toutefois quelques réserves — que la thèse de l'anticipation de la structure des taux offre la meilleure approximation des rapport observés.