Credit and Capital Markets, 57 (2024) 1-4: 157-183
https://doi.org/10.3790/ccm.2024.1447405
Scientific Papers

Uncertainty in the Black-Litterman Model:
A Practical Perspective

Adrian Fuhrer* and Thorsten Hock**

Abstract

Deriving an optimal asset allocation hinges crucially on the quality of inputs used in
the optimization. If the vector of expected returns and the covariance matrix are known
with certainty, mean-variance optimization produces optimal portfolios. If, however,
these parameters are estimated with uncertainty, mean-variance optimization maximizes
estimation error. We provide a literature review of procedures developed in academia to
incorporate parameter uncertainty in the asset allocation process, focusing on common
heuristics and Bayesian methods. The Black-Litterman model, an application of the
Bayesian framework, has practical appeal for investors as it permits the specification of
subjective views. Calibration of the model is, however, not trivial and induces rigidity. In
Fuhrer and Hock (2023), a generalization of the Black-Litterman model was introduced
and a fully quantitative, objective parameterization was derived. Here, we start with the
same generalization, but present a qualitative, more intuitive approach for setting param-
eters. This gives the investor more control over the mixing of views and equilibrium re-
turns, while lending intuition to the parameter choice in the classical setting.

Keywords: Asset Allocation, Bayesian, Black-Litterman Model, Model Uncertainty, In-
vestment Decisions, Portfolio Choice
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I. Introduction

The classical mean-variance optimization of Markowitz (1952) is often con-
sidered the standard mathematical framework to derive an optimal asset alloca-
tion. From a practical standpoint, however, several problems of unconstrained
mean-variance optimization are well documented: Resulting portfolios are often
highly-concentrated, very sensitive to the input parameters and maximize esti-
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mation error in the inputs (Idzorek, 2007). The problems predominately stem
from the assumption that the vector of expected mean returns g and the covar-
iance matrix X used for mean-variance optimization are stable and known with
certainty. In fact, these input parameters are unknown and can only be estimat-
ed with uncertainty, which has to be taken into account in portfolio optimiza-
tion. Jobson and Korkie (1980, 1981) and DeMiguel et al. (2009) show that sim-
ple equal-weighting actually outperforms mean-variance optimization in the
presence of input parameter uncertainty, while Best and Grauer (1991) show
how sensitive portfolio weights react to the estimated mean returns.

In practice, these problems are often circumvented by imposing additional
constraints on individual assets” weights to generate more “intuitive” portfolios,
resulting in theoretically inferior diversification. To improve upon this ap-
proach, several methods have emerged from academia to incorporate parameter
uncertainty. In this paper, we will review the most common approaches to ad-
dress the problem, including heuristic methods that encompass uncertainty by
“resampling” and more sophisticated Bayesian methods that derive updated dis-
tributions of returns (Rachev et al., 2008). These methods have been shown to
result in portfolios with less concentration, more stability and better out-of-
sample performance.

For many investors however, these methods still lack a convenient way of ex-
pressing their subjective views. This has been addressed in seminal work by
Black and Litterman (1990, 1991, 1992), where they develop the Black-Litter-
man model, an application of Bayesian statistics that allows an investor to spec-
ify subjective views on some assets. The views are combined with a market im-
plied equilibrium to derive updated parameters for the vector of expected re-
turns and the covariance matrix. It is a model with particular appeal for
investors, as it provides a sophisticated statistical framework for practitioners,
while allowing for discretion in specifying subjective views. Although the imple-
mentation of the Black-Litterman model is conceptually tractable, it hinges on
the specification of a single scalar parameter of uncertainty; 7, the confidence
an investor has in the market equilibrium. With complex effects of the parame-
ter on the final allocation and a lack of clear guidance on how to set it, it poses
a hurdle for the practical implementation of the model.

In Fuhrer and Hock (2023), a generalization of the Black-Litterman model
with respect to the market equilibrium returns used to anchor the investors’
views is proposed. More specifically, the single scalar confidence parameter 7 of
the original model is replaced with uncertainty parameters for each asset, intro-
ducing flexibility while still permitting the classical Black-Litterman model as a
special case. As shown in Fuhrer and Hock (2023), this flexible model can then
be used as the basis for a purely quantitative (and thus objective) parametriza-
tion of the equilibrium model, with favorable portfolio properties. While this
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approach is theoretically superior, implementation is demanding and might
pose challenges to the model’s practical use. Here, we therefore focus on a qual-
itative parametrization of the generalized model. We lend intuition to the uncer-
tainty parameters on the one hand, and allow the investor to set them with a
confidence interval approach on the other. In a simple four-asset example, we
then illustrate the application of the generalized model to solve a classical asset
allocation problem. By directly comparing the proposed allocations of both the
classical Black-Litterman model and our more flexible model, we can highlight
our model’s practical usability.

The paper is structured as follows. In Section II, the literature on parameter
uncertainty in portfolio optimization is reviewed. In Section III we briefly recap
the classical Black-Litterman model and the generalization of Fuhrer and Hock
(2023). Then, Section IV introduces qualitative approaches to parameterise the
generalized model. Section V illustrates the use of this model and shows how
the Black-Litterman model is encompassed as a special case, before Section VI
concludes the paper.

II. Literature Review

The problem of estimation error of input parameters in the context of portfo-
lio optimization is well documented: Broadie (1993) finds surprisingly large ef-
fects of estimation error. Due to the error maximization property of mean-vari-
ance analysis, he finds that the estimated performance of resulting portfolios are
optimistically biased predictors of the actual portfolio performance, resulting in
large misallocations. Similarly, Chopra (1993) shows that small errors in input
parameters can lead to large changes in the composition of the optimal portfolio
and Best and Grauer (1991) highlight how sensitive portfolio weights react to
the estimated mean returns. This is further investigated by Chopra and Ziemba
(1993). Using the concept of certainty equivalent loss (CEL), a monetary meas-
ure of the cost of picking the wrong portfolio, they show that for a given risk
tolerance, the CEL for errors in means is approximately 10 times that for errors
in variances and over 20 times that for errors in covariances. This resonates well
with the results of Merton (1980) who uses a continuous-time model of stock
prices and a simulation study to show that estimates of the mean, in contrast to
estimates of volatility, would be very imprecise even with 30 years of data. While
the volatility estimates could be improved by using higher-frequency data, esti-
mates of the mean can only be improved by adding time periods, which is often
not possible. Kolm et al. (2014) provide a more recent overview of the topic, re-
iterating the findings of Jobson and Korkie (1980, 1981) and DeMiguel et al.
(2009) that show how naive equal weighting of portfolio constituents actually
outperforms mean variance optimization, and highlighting the economic im-
pact of the problem.
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Although not based on economic theory, heuristic approaches are commonly
used by practitioners to deal with parameter uncertainty. First, constraints on
individual portfolio weights should contain the problems associated with esti-
mation error. The rationale behind these constraints is the observation by
Michaud (1989) that mean-variance optimizers are “estimation-error maximiz-
ers” They overweight the securities or asset classes that have large estimated re-
turns, negative correlations or small variances. But these are exactly the securi-
ties most likely to contain estimation error. Frost and Savarino (1988) discuss
this approach in more detail, and Jagannathan and Ma (2003) show that impos-
ing constraints on portfolio weights actually acts in the same way as shrinkage
estimators for the covariance matrix do.

Second, the resampling approach, a technique proposed by Michaud (1998)
and Michaud and Michaud (2008) has gained a lot of attraction by practitioners.
It is intuitively better comprehensible than the statistically more sophisticated
Bayesian approaches. An excellent review is provided by Scherer (2002). The re-
sampling approach, as described in Michaud (1998), takes the same inputs as
classical mean-variance optimization: A vector g of expected returns and a co-
variance matrix X. It assumes returns to follow a multivariate normal distribu-
tion defined by these inputs. To encompass parameter uncertainty, the resam-
pling approach then draws a large number of random samples from this multi-
variate normal distribution. For each of these random samples, a new fZ, and X
is obtained (s=1,...,S, where § is the number of new samples). Each of these
new parameter-pairs is then used as an input into a classical mean- variance op-
timization that can also have constraints on portfolio weights. As a result, S vec-
tors of optimal portfolio weights @, are obtained. The resampled optimal port-
folio is then simply the mean vector over all S weight vectors. Portfolio resam-
pling is thus, in essence, classical mean-variance optimization repeated a large
number of times with slightly varying, simulated inputs. As pointed out by
Michaud and Michaud (2008) and Scherer (2002), resampling has various ap-
pealing features. First, it produces portfolios that are better diversified and have
a lower sensitivity to input parameters (less sudden shifts). Also, since the dis-
tribution of portfolio weights is available, estimation error is visualized and can
be used, for instance, to implement a rebalancing approach. Scherer (2002) how-
ever notes that “there is no economic rationale derived” and points to other
problems, especially in the case where no constraints on portfolio weights are
present.

Besides these heuristic approaches, the Bayesian framework offers an alterna-
tive path to incorporate parameter uncertainty in the allocation process that is
rooted in statistics. It allows to optimally combine two sets of information, usu-
ally sample and non-sample data (Rachev et al., 2008). A prior belief is updated
with new data and optimally combined to the posterior distribution. As an intu-
ition, Bayesian methods take into account that a view on one parameter of the

Credit and Capital Markets, 57 (2024) 1-4



Uncertainty in the Black-Litterman Model: A Practical Perspective 161

model affects all other parameters as welll. For the problem of portfolio selec-
tion, Bayesian methods are used to derive updated posterior distributions of re-
turns that incorporate parameter uncertainty. Of these, the most simple ap-
proach is the diffuse prior. It does not state any other view than that the param-
eters are estimated with some uncertainty. Most often, Jeffreys’ prior (Jeffreys
(1961)) is used to specify this very basic view. The resulting posterior distribu-
tion has the functional form of a multivariate normal distribution with the same
mean as the sample data, but a scaled covariance matrix. The parameter uncer-
tainty introduced through the diffuse prior thus leads to an overall increase in
the perceived risk. As an alternative, a set of methods use informative (conju-
gate) priors, which allow the specification of prior distributions with well-de-
fined properties (see Frost and Savarino (1986)). A particular application of con-
jugate priors are shrinkage estimators, as developed for instance in Stein (1956),
James and Stein (1961), Jorion (1986) or Ledoit and Wolf (2003). In contrast,
non-conjugate priors lead to posterior distributions that are not obtainable in an
analytical form. As a result, views can be specified much more flexibly but ap-
plications rely on simulation methods, as, for instance, in Markowitz and Usmen
(2005) or Harvey et al. (2008). Finally, Meucci (2008) proposes an approach
where not even the prior belief is analytically expressed. There, it is possible to
specify “fully flexible views in fully general non-normal markets”. The approach
relies on a methodology called entropy pooling, a generalization of Bayesian up-
dating.

The Black-Litterman model is another application of the Bayesian framework
to the problem of asset allocation2. As both the prior and posterior distributions
are well-defined, it belongs to the same group of methods as the shrinkage esti-
mators3. Indeed, it can be interpreted as a shrinkage method, where the inves-
tors’ views act as the shrinkage target. Kolm et al. (2021) provide an overview of
recent extensions to the original Black-Litterman model, including robust opti-
mization and extensions to multiple-periods.

Several publications investigate the performance of the presented approaches
to incorporate parameter uncertainty in the portfolio allocation process. Wolf
(2006) finds both resampling and shrinkage estimators to outperform classical
mean-variance optimization. Markowitz and Usmen (2005), Fernandes and Or-
nelas (2009), Scherer (2006) and Harvey et al. (2008) compare various Bayesian
methods to resampling, with ambiguous results. Fernandes et al. (2012) propose

1 For a through discussion of the Bayesian framework, consider Rachev et al. (2008) or
Scherer (2010).

2 Note that while the Black-Litterman model is considered to be a Bayesian method,
Avramov and Zhou (2010) point to the fact that it is not entirely Bayesian, as the data
generating process is not spelled out and the predictive density is not used.

3 Consider A.1 for an alternative interpretation of the model in terms of Jeffreys prior.
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to combine the Black-Litterman model with resampling and actually show that
this combined method outperforms in some cases. The largest study in this field
is Becker et al. (2015), where seven different Bayesian estimators are compared
to their resampled counterparts. They find the resampled versions to perform
worse than the not-resampled equivalents.

III. Theory

In a first step, this section will develop the classical Black-Litterman model as
published in Black and Litterman (1990, 1991, 1992) and He and Litterman
(1999). In the interest of brevity, we only cover the theoretical steps required for
understanding subsequent deviations. We follow Fuhrer and Hock (2023) closely
and refer the interested reader there for additional details.

1. The Black-Litterman model

As an application of the Bayesian framework, the Black-Litterman model
combines two sources of information: £, the (N x 1) vector of expected excess
returns derived from a market-based model (where N is the number of assets),
and ¢, a (K x 1) vector of subjective views on the assets’ expected excess returns
(where K is the number of views). Then, according to Bayes’ rule, the following
relationship holds:

M S (elg) o< f (gle) f ().

In other words, in order to derive the posterior distribution of expected excess
returns given the investors subjective views, the prior distribution of expected
excess returns and an assumption about the distribution of the investors’ views
given the prior distribution are required. Bayes’ theorem then allows to change
the order of conditioning. To derive a prior distribution of expected excess re-
turns, the classical Black-Litterman model derives the (N X 1) vector of equilib-
rium returns 1 from the Sharpe (1964) and Lintner (1965) CAPM:

) 7 =P[Ry —Ry),
where f is an (N x 1) vector of market betas of the assets and R, — R; is the
market’s excess return (above the risk free rate). To incorporate parameter un-

certainty, the model assumes that the market is in equilibrium on average, but
could be in disequilibrium at any given point in time. Therefore,
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3) H=T+e€
with  e~N(0,¥)

(4) and Y=1Z,

where € is a (N x1) vector of random shocks that push the market off its long-
run equilibrium and ¥ is the (N xN) covariance matrix of these shocks. Com-
bining these yields the prior distribution of 4:

(5) M~ N(w,Z).

The scaling parameter 7 simply scales the empirical covariance matrix and
represents the uncertainty in the accuracy with which = is estimated. Given this
prior distribution, it is now possible to specify subjective views on the absolute

or relative performance of assets. They are specified with a (K X N) views matrix
P of K views on N assets; the vector ¢ of expected returns of the views; and a

(K x K)-covariance matrix € of these views. P and ¢ are of the following form:
Pyt PN 9
P=| 1 i g=|1]
Py Pk dx

where each line of P specifies a long only or long-short portfolio of the N assets
and every element of ¢ specifies the expected return of the respective portfolio.
The returns of the views are also assumed to be expressed with uncertainty, such
that:

(6) q=Pu+e

where £~ N(0,Q),
with € a (K x 1) vector of random shocks. The original authors (Black and Lit-
terman, 1990, 1991, 1992) propose a simplifying assumption for the covariance

matrix of the shocks: The views are assumed to be uncorrelated, leading to a di-
agonal covariance matrix Q:

(7) Q=
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The distribution of the investors’ views given the prior distribution of x is
then the following multivariate normal distribution:

(8) q|pu~N(Pu,Q).

Bayes’ theorem can now directly be applied to combine the two sources of in-
formation consistently. The posterior distribution of expected excess returns
given the investors subjective views is*

©) #lg~N(my),
where

(10) m=VW¥'n+PQlg)
and

(11) V=(¢'+PQP) ",

This corresponds to the following multivariate normal distribution for the
posterior distribution of the assets’ returns:

(12) R|q~N(iZ)
with jg=m and Z=Z+V.

These updated parameters can now be used as the input to a portfolio optimi-
zation routine.

2. Deviation from the Black-Litterman model

In Black and Litterman (1992), the original authors reduce the problem of set-
ting W to setting a single scalar parameter 7, as they propose that ¥ is propor-
tional to the covariance matrix X (see Equation (4)). However, as discussed in
Fuhrer and Hock (2023), this assumption induces rigidity in the model and
makes it opaque, as there are no guidelines on how to set the value of 7, or even
how to interpret it intuitively. This poses a challenge for practical applications.

Thus, Fuhrer and Hock (2023) propose a simple deviation of the Black-Litter-
man model to allow a more flexible specification of ¥, while still encompassing
the Black-Litterman specification as a special case. Here, we briefly reproduce

4 Consider for instance Satchell and Scowcroft (2007) for a mathematical proof.
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that deviation for the reader’s convenience, but refer to the original paper for
more details.

In a first step, the covariance matrix of the returns X is decomposed into a
volatility vector o and a correlation matrix ®:

(13) 2 = diag (o) ®diag(0).

The correlation matrix captures information about the co-movement of equi-
librium returns, but a new vector of standard errors of estimated equilibrium
returns & can be chosen by the investor. Then ¥ simply combines these two:

(14) ¥ = diag(6)@diag(6).

If the investor sets 6 = V70 (i.e. the standard errors of estimated equilibrium
returns are proportional to the empirical volatilities of returns) the classical
Black-Litterman model can be recovered:

(15) ¥ = diag(6) @diag(6) = diag (\/;O')CDdiag (\/;O') =7X.

Using this decomposition, Fuhrer and Hock (2023) develop a multi-stage
econometric procedure to specify uncertainty about equilibrium returns for
each asset individually, which utilizes information from underlying index con-
stituents to solve an asset allocation problem. In contrast, this study introduces
a method that addresses heuristic or qualitative descriptions of uncertainty -
provided, for instance, by a portfolio manager or the investment committee of a
pension fund - and offers practical guidance for application in investment prac-
tice.

IV. Intuition through Judgemental Approach

In order to increase the intuition in specifying the uncertainty in the expected
equilibrium returns, we follow and generalise the Judgemental Approach pro-
posed in Rachev et al. (2008) and Scherer (2010) to specify uncertainty in the
expected equilibrium returns. What follows is our proposition to model this un-
certainty flexibly and consistently, and to integrate it into the Black-Litterman
model.
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1. Symmetric Confidence Intervals

First, consider the case of symmetric confidence intervals. For each asset, the
parameters of interest are 7 and o,,. The relationship of the confidence level ¢,

the upper and lower limits u, and [, and the parameters of interest is depicted
in Figure 1.

Figure 1: Symmetric confidence intervals of a normal distribution

Note: 1 is the expected return, 0, the standard deviation of the expected return, o the confidence level (for a 95%
confidence level, &= 5%) and [, and u, are the lower and upper limit, respectively.

There are two fundamental relations between the parameters:

l
(16) ”:M
2
and
l,—rm
(17) o, ="—,
i Zoz/z

where Z ,,is the (& / 2)-quantile of the standard normal distribution.
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Table 1

Different parameter-combinations elicited form the investor
to compute 7 and o,

User-specified T (o
l,—rm
7Tl 0 7
z Za/z
T—u,
Uy, T
Za/z
I Ug + l/r lll' —Ug
sUg s
o @ 2 Za/z

With these, the investor can be asked to specify various combinations of
parameters to arrive at 7 and 0,. The most convenient ones are tabulated in
Table 1. In the first and second line of Table 1 the investor specifies his expecta-
tions about the mean return, and either a lower or an upper limit that the mean
return is expected to lie in with a confidence level (1 — ). The last line of Table 1
is probably the most intuitive: The investor simply states the interval the expect-
ed equilibrium return lies in, with a confidence in that interval.

2. Asymmetric Confidence Intervals

Figure 2: Asymmetric confidence intervals of a normal distribution

Note: Asymmetric confidence intervals of a normal distribution. Notation is as in Figure 1, with the exception that
« is allowed to be asymmetric (¢ = a; + ¢, , with ; = ). The investor can specify the probability mass in the
tails independently.
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Since the expected mean returns are required to follow a normal distribution,
introducing asymmetry in the estimate is not possible in this framework. It is,
however, possible for the investor to specify an asymmetric confidence interval.
The situation is depicted in Figure 2 and is very similar to the situation in Fig-
ure 1 with symmetric confidence intervals. But here, the probability mass in the
tails (¢; and ¢, ) can be specified independently. Then,

. u/rZoq + lizzl—au

(18)
Za] 721—0:,4
and
l,—rm
19 o, == .
(19) =z,

3. Correspondence to T

The uncertainty parameter 7 in the classical Black-Litterman model is simply
the parameter of proportionality between W and X. Given a specification of o,
it is possible to recover the implied 7, for each asset k. Take the empirical vari-
ance of the returns o7 and the specified variance of the estimate of the equilib-
rium return, o, , to compute:

2
O-/r,k

(20) Tk = >
Oy

Note that we index 7 over k as well, as with the added flexibility, 7 is specific
to every asset. This correspondence then allows the computation of implicit
confidence intervals from the assumptions of the Black-Litterman model. Given
@, T and 7 from the model, and assuming a confidence level of ¢, the corre-
sponding symmetric confidence intervals can readily be obtained as:

(21) lou,)=mFr-diag(T)-Z,), .

For asymmetric confidence intervals, with oy and a, specified by the investor,
the interval is defined as:

(22) I, =7 —t-diag(2)-Z,,
and
(23) u, =x+r7-diag(X)-Z,_,, .
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We propose to use these intervals as a starting point for the investor. From
there, she can adjust the intervals and confidence according to her knowledge
about the models generating the estimated equilibrium returns.

V. Ilustration

To illustrate how the generalised model can be used to derive the updated in-
put parameters for portfolio optimization and the resulting asset allocation, a
simple four-asset example will be introduced in this section. The section is
structured as follows: First, the data and expected equilibrium returns are pre-
sented. Then, the classical Black-Litterman model with a constant 7 but without
views is implemented. The resulting allocation serves as the basis of compari-
son. We then introduce our flexible model, by allowing the investor to specify
uncertainty in the equilibrium model other than through the constant 7. Next,
we introduce a set of subjective views and recompute both the Black-Litterman
model and our flexible model under these views. This allows to identify and dis-
cuss the effects of our results.

1. A Four-Asset Example

Consider a simple example with four asset classes to choose from: Global eq-
uities (GE), global government bonds (GGB), emerging market bonds (EMB)
and real estate funds (REF)>. Assume that they are characterised by the follow-
ing historical mean vector g and covariance matrix X of risk premia:

[/ pX GE GGB EMB REF
GE 6.43% GE 1.78%  -0.16% 1.04% 1.31%
GGB 3.26% GGB -0.16% 023%  -0.13% 0.00%
EMB 4.76 % EMB 1.04%  -0.13% 1.40 % 0.89 %
REF 9.06 % REF 1.31% 0.00 % 0.89% 3.24%

As suggested in Section 3.2, X can be decomposed into historical volatilities &
and the correlation matrix ®:

5 Consider Appendix A.2 for details on the time series used.
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(4 L GE GGB EMB REF
GE 13.35% GE 1.00 -0.25 0.66 0.54
GGB 4.74% GGB -0.25 1.00 -0.23 0.00
EMB 11.85% EMB 0.66 -0.23 1.00 0.42
REF 18.00 % REF 0.54 0.00 0.42 1.00

Suppose that the following equilibrium returns are derived from an equilibri-
um model (for instance, the CAPM):

T
GE 3.50%
GGB 0.60%
EMB 2.50%
REF 3.00 %

2. Asset Allocation without Views

In a first step, we illustrate how the added flexibility in the proposed model
influences the asset allocation when the investor has no subjective views about
absolute or relative performances of assets. As a basis of comparison, we first
derive the asset allocation using the Black-Litterman model with the constant 7
set to 0.05 in Section 5.2.1. Implied confidence intervals are derived and pre-
sented. Then, in Section 5.2.2, we will slightly adjust these confidence intervals
and, using the flexible model, will derive a new asset allocation. A comparison
of the two allocations allows the identification of the effects of the flexible mod-
el specification.

Using the Black-Litterman Model

To use the Black-Litterman model without investor’s subjective views, only
the hyperparameter 7 has to be set. We choose to set 7 = 0.05, which is in line
with suggestions summarized in Idzorek (2007). According to Equation (4), the
uncertainty about the expected equilibrium returns ¥ is simply the scaled co-
variance matrix ¥ = 7X:

Credit and Capital Markets, 57 (2024) 1-4
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v GE GGB EMB REF

GE 0.089 % -0.008 % 0.052 % 0.065 %

GGB -0.008 % 0.011% -0.007 % 0.000 %

EMB 0.052% -0.007 % 0.070% 0.045%

REF 0.065% 0.000 % 0.045 % 0.162 %

For illustrative purposes, and following Section 3.2, we decompose ¥ into the
volatility vector of the expected equilibrium returns ¢, and the correlation ma-

trix @:

o (0] GE GGB EMB REF
GE 2.99% GE 1.00 -0.25 0.66 0.54
GGB 1.06 % GGB -0.25 1.00 -0.23 0.00
EMB 2.65% EMB 0.66 -0.23 1.00 0.42
REF 4.03% REF 0.54 0.00 0.42 1.00

As expected, the correlation matrix @ is equivalent to the correlation matrix of
the data presented in Section 5.1 and the volatility vector of the expected equilib-
rium returns is simply the scaled volatility vector of the returns 0, =~ 70. It is
also possible to obtain the implied symmetric confidence intervals of this specifi-
cation for an assumed confidence level of (1 — @) = 80% (i.e. 10 % of probability
mass in each symmetric tail), derived using Equation (21):

n 7 uy oy a, 4
GE 3.50% -0.33% 7.33% 10% 10% 0.050
GGB 0.60 % -0.76 % 1.96 % 10% 10% 0.050
EMB 2.50% -0.90% 5.90 % 10% 10% 0.050
REF 3.50% -1.66 % 8.16% 10% 10% 0.050

All the inputs required to compute the updated parameters 2 and ¥ from the
Black-Litterman model are now defined. Using Equations (10)-(12), the follow-
ing updated parameters are obtained:
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Y7, > GE GGB EMB REF c

GE 3.50% GE 1.87% -0.16% 1.09% 1.37% GE 13.68%

GGB | 0.60% GGB |-0.16% 0.24% -0.14% 0.00% GGB 4.86%

EMB | 2.50% EMB 1.09% -0.14% 147% 0.93% EMB |[12.14%

REF 3.50% REF 137% 0.00% 0.93% 3.40% REF 18.45%

These parameters can be used as the inputs of a classical mean-variance opti-
mization problem as proposed by Markowitz (1952). The resulting portfolio
weights @y, are reported below. The weights are constraint to add to one, the
portfolio volatility o” is constraint to 8.00% and the expected equilibrium re-
turn is maximised.

@y
GE 46.61 %
GGB 35.18%
EMB 8.85%
REF 9.35%

Using the Flexible Model

In the previous section, by setting the hyperparameter 7, the investor implic-
itly specified the same level of confidence in each of the estimated equilibrium
returns. This becomes obvious when investigating the implied confidence inter-
vals already derived in Section 5.2.1 above, where 7 is constant for all assets.

Suppose, however, that the investor derives these estimates not from a single
equilibrium model, but from specific models for each asset, or that experience
suggests that equilibrium returns for some assets are more reliably estimated
than for others. For instance, the investor might have a smaller confidence in
the estimate of the equilibrium return of global equities. We represent this by
leaving the upper and lower limit unchanged, but change the mass in the tails
from 10 % to 20 % for each. Our confidence in the estimated equilibrium returns
thus decreases from 80 % to 60%. The second modification we propose is that
the investor has a very specific equilibrium model for emerging market bonds,
which suggests a higher confidence in the form of limits closer to the mean and
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a slightly asymmetric confidence interval®. Both modifications are added in the
table below:

z I7 uy &k Qy i T
GE 3.50% -0.33% 7.33% 20 % 20 % 0.116
GGB 0.60 % -0.76 % 1.96 % 10% 10% 0.050
EMB 2.50% 1.00 % 4.50% 11% 5% 0.011
REF 3.50% -1.66% 8.16% 10% 10% 0.050

The parameter 7 is no longer constant in this case. It is higher for global eq-
uities, representing the higher uncertainty in the equilibrium estimate, and low-
er for emerging market bonds, as the investor is able to estimate the equilibrium
returns more accurately. On average, 7 is still very close to 0.05, guaranteeing
that results are not driven by additional risk of the equilibrium model.

The new assumptions about the expected equilibrium returns result in the fol-
lowing parameters o, and ¥:

(o b 4 GE GGB EMB REF
GE 4.55% GE 0.207% | -0.012% 0.036% 0.100 %
GGB 1.06 % GGB -0.012% 0.011% | -0.003% 0.000 %
EMB 1.22% EMB 0.036% | -0.003% 0.015% 0.020 %
REF 4.03% REF 0.100% 0.000 % 0.020 % 0.162%

Using Equations (10)-(12) also here, the updated parameters are obtained as
follows:

i z GE GGB EMB  REF G
GE 3.50% GE | 1.99% -0.17% 1.08% 1.41% GE |1410%
GGB | 0.60% GGB |-0.17% 0.24% -0.13% 0.00% GGB | 4.86%
EMB | 250% EMB | 1.08% -0.13% 1.42% 0.91% EMB |11.91%
REF | 3.50% REF | 1.41% 0.00% 091% 3.40% REF |18.45%

6 To insure that the expected equilibrium return of emerging market bonds is un-
changed at 2.50 %, the probability mass in the lower tail has the somewhat odd value of
11 %.
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With the exact same optimization routine used above (o? = 8.00 %), the new
weights are obtained and compared to the Black-Litterman solution below:

@py, @Fy,
GE 46.61 % 41.34%
GGB 35.18% 34.50 %
EMB 8.85% 13.81%
REF 9.35% 10.35%

As would be expected, the added uncertainty about the equilibrium returns of
global equities leads to a smaller proportion of wealth invested in this asset
class. Conversely, a larger proportion of wealth is invested in emerging market
bonds, as the expected equilibrium return is specified with higher confidence.
Differences in the weights of the other asset classes stem from the propagation
of the effects through the correlation matrix with the Bayesian methodology in-
herent to the Black-Litterman approach.

3. Investor’s Subjective Views

In a second comparison, investor’s subjective market views are introduced.
They are defined as in the original Black-Litterman model. It is assumed that
the investor holds three distinct views about the four assets:

1. Global equities (GE) will have a performance of 4% for the foreseeable fu-
ture.

2. Global government bonds (GGB), on the other hand, have an expected re-
turn of only 0.5 %.

3. Real estate funds (REF) will outperform global government bonds (GGB)
and emerging market bonds (EMB) by 1 percentage point.

From this, both P and ¢ can be obtained:

1 0 0 0 4.0%
P=[0 1 0 0 ¢q=|0.5%
0o -1 _1 1.0%
2 2

In order to specify the uncertainty about these views, the method proposed by
He and Litterman (1999) is used. Accordingly, the diagonal elements of Q can be
determined as @y ; = 7p,Zp; and the off-diagonal elements are assumed to be
zero. We still assume a constant 7 = 0.05 for the views, yielding the following
views-covariance matrix:
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Q View 1 View 2 View 3
View 1 0.09 % 0 0
View 2 0 0.01% 0
View 3 0 0 0.13%

It is important to note that these views are used identically in both the classi-
cal Black-Litterman model illustration, as well as in the illustration of the more
general model. This allows to isolate the impact of our modification on the asset
allocation when views are present.

4. Asset Allocation with Views

The views just introduced will now be implemented in both the classical
Black-Litterman model as well as in the more flexible model. To allow a com-
parison, the setup in both models is kept equivalent to the analysis in Sec-
tion 5.2, and the same views, as just outlined, are introduced to both models.

Using the Black-Litterman Model

As before, we use Equations (10) - (12) to compute the updated parameters
from the Black-Litterman model, this time taking into account the investor’s
subjective views:

y7i ) GE GGB EMB REF G
GE 3.67% GE 1.82% -0.16% 1.07% 1.33% GE 13.51%
GGB | 0.54% GGB |-0.16% 0.23% -0.13% 0.00% GGB 4.80%
EMB | 2.66% EMB 1.07% -0.13% 1.46% 0.92% EMB |12.07%
REF 3.16% REF 1.33% 0.00% 0.92% 3.32% REF 18.22%

The parameter & is pulled into the direction of the views. Especially View 3
has a non-trivial influence on the parameter: As it assumes the relative return of
global government bonds and emerging market bonds to real estate funds to be
smaller than it actually is, the expected return of real estate funds is reduced,
while that of global government bonds and emerging market bonds is increased.
The effect on global government bonds is however not visible, as there is an in-
teraction with the absolute View 2, targeted directly on this asset class. The re-
sulting volatilities are generally smaller, as the added information reduces the
uncertainty in the model.
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The resulting asset allocation is reported below and compared to the Black-Lit-
terman model without views. As can be seen, the allocation weights are pulled
into the direction indicated by the views.

Qg wy;
GE 46.61 % 51.70%
GGB 35.18% 33.96 %
EMB 8.85% 12.08 %
REF 9.35% 2.25%

Using the Flexible Model

The same experiment is repeated for the more flexible model. All specifica-
tions are equivalent to the specifications in Section 5.2.2, but the views as out-
lined in Section 5.3 are introduced. The resulting parameters are the following:

y2 % GE GGB EMB REF (4

GE 3.75% GE 1.84% -0.16% 1.05% 1.32% GE 13.57%
GGB | 0.54% GGB |[-0.16% 0.23% -0.13% 0.00% GGB 4.80%
EMB | 2.55% EMB 1.05% -0.13% 1.41% 0.90% EMB 11.89%
REF 3.13% REF 1.32% 0.00% 0.90% 3.31% REF 18.19%

First, note how the additional uncertainty in the equilibrium returns of global
equities is propagated to the volatility vector ¢ used in the optimization, and
conversely for emerging market bonds. Second, the impact on #Z is more com-
plex in this case: The expected return of global equities is increased because the
added uncertainty about the equilibrium return pulls the model more toward
View 1, which assumes a higher return of global equities. For emerging market
bonds, where the expected equilibrium return is estimated with less uncertainty,
the return is pulled more towards that equilibrium return than the return im-
plied by View 3.

The resulting allocation is reported in the next table, where a comparison to
the results of the more flexible model without views is provided as well.
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@py o
GE 41.34% 54.89 %
GGB 34.50 % 35.69 %
EMB 13.81% 7.87 %
REF 10.35% 1.55%

The overall results are illustrated graphically in Figure 3.7 The effects of accu-
rately reflecting the uncertainty about expected equilibrium returns in the asset
allocation framework are visible, as the more flexible model clearly chooses dif-
ferent weights than the classical Black-Litterman model. Without views, more
(un)certainty about expected equilibrium returns tends to increase (decrease)
the weight of the respective asset. When views are introduced, effects are more
complex, as the uncertainty about expected equilibrium returns is traded off
with the uncertainty in the views, and thus an interaction of effects is taken into
account. This also shows the advantages of using the more flexible model: These
effects are accounted for consistently in a Bayesian framework, presenting the
investor with a flexible tool for the asset allocation process.

30% - R | EESESEEEEEEEEE RS 30% f-

20% - e T 20% |-

10% - S [ CEEETEE B SR - 10% -

0%

GGB EMB REF GGB EMB REF

A = wp, Wy,
Figure 3: Optimized portfolio weights for the Black-Litterman model
and the more flexible model, with and without views

Note: Optimized portfolio weights with and without views, based on a portfolio volatility target of 8 %.

7 All results are based on a portfolio volatility target of 8 %. Please refer to Appendix
A3 for portfolio weights corresponding to different volatility targets.
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VI. Conclusion

To attenuate one of the major problems of mean-variance optimization, sever-
al approaches to incorporate parameter uncertainty into the asset allocation
process have been proposed in the academic literature. Of these, the Black-Lit-
terman model has practical appeal for institutional investors, as it also allows
the investor to specify subjective views that are consistently incorporated into
the allocation using sophisticated Bayesian methods. The specification of the
uncertainty parameter 7, controlling the degree of uncertainty about the equi-
librium returns, is however not trivial and introduces rigidity. A more flexible
version of the model is introduced in Fuhrer and Hock (2023), where an entirely
data-driven approach is used to flexibly parameterise the model. We extend this
method with a parametrization of the flexible model based on a more intuitive,
judgmental approach that can also be reversed, i.e. used to lend intuition to the
specification of 7 in the classical Black-Litterman model. Our qualitative ap-
proach is illustrated in a simple four-asset example of a classical asset allocation
problem. The results clearly indicate that our proposition has an influence on
the resulting asset allocation, and how these effects are propagated through the
Bayesian nature of the model.
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VII. A. Appendix

A.1. Alternative Interpretation of t

There is an alternative interpretation of 7 available when comparing the results of
Black- Litterman to the results of diffuse priors from Bayesian statistics. The use of dif-
fuse or uninformative priors is an established methodology to incorporate estimation
risk in the allocation process (see, for instance Rachev et al. (2008)). Using Jeftreys prior
(Jeffreys (1961)), it can be shown that the posterior distribution of returns has the fol-
lowing parameters:

(A1) g=p and =T "3

To compare this to the Black-Litterman assumption above, consider the Black-Litter-
man model with no views. In this case,

(A2) g=m=n and EZ=X+V=Z+¥=(1+7Z.

This allows us to see the connection between using Jeffreys prior and the Black-Litter-
man model without subjective views and lends an intuitive interpretation for the param-
eter 7. In the example above, with N = 4 assets, 7 becomes a function of T', the number
of data points used to estimate the expected returns in the method using Jeffreys’ prior:

d\r_
(A.3) T:(lJr;:)_(T;)L

For instance, setting T = 36 (i.e. we estimate expected returns from three years of
monthly data), then 7= 0.2. If T = 120 (i.e. ten years of data), 7 = 0.05.

A.2. Construction of Time Series

For the illustration, we use the following time series (all data obtained from Bloom-
berg):
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Time Series

GE MSCI World Total Return (hedged to CHF) minus 3M Libor CHF

GGB 50% FTSE US GBI (constant Duration 6.5 Year) minus 3M US Govt. Bond
Yield

50 % FTSE Germany GBI (constant Duration 6.5 Year) minus 3M Libor EUR

EMB | Bloomberg Barclays EM USD Aggregate Total Return unhedged minus
FTSE US GBI (Duration matched)

REF FTSE NAREIT Composite Total Return minus 3M US Govt. Bond Yield

1. A.3. Portfolio Weights for Different Target Risk Levels
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Figure 4: Allocation Weights for different Target Volatilities (without Views)
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Figure 5: Allocation Weights for different Target Volatilities (with Views)
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