Berücksichtigung von Schätzunsicherheit bei der Kreditrisikobewertung

Vergleich des Value at Risk der Verlustverteilung des Kreditrisikos bei Verwendung von Bootstrapping und einem asymptotischen Ansatz

Von Henry Dannenberg, Halle*

I. Einleitung

In vielen Risikomodellen bleiben Schätzfehler bei der Bestimmung von Risikoparametern unberücksichtigt. Hierdurch wird vernachlässigt, dass diese Parameter häufig nur geschätzt werden, also selber einen Unsicherheitsfaktor und damit auch ein Risiko darstellen. 1 So sind historisch beobachtbare Ausprägungen, auf denen eine Schätzung beruht, auch nur zufällige Realisationen der zu schätzenden Risikoverteilung. Erfolgten in der Vergangenheit zufällig nur wenige Ausfälle, besteht die Gefahr, ein Risiko zu unterschätzen. Umgekehrt besteht natürlich auch die Möglichkeit, auf Grundlage von historischen Beobachtungen, das Risiko zu überschätzen. Beide Fälle stellen für das Risikomanagement ein Problem dar. Im ersten Fall wird gegebenenfalls eine zu geringe Risikovorsorge betrieben, also zum Beispiel zu wenig Eigenkapital vorgehalten. Im zweiten Fall wird hingegen zu restriktiv gehandelt. Das heißt, es wird zu viel Eigenkapital für die Risikodeckung eingeplant, wodurch Renditeziele schwieriger zu erreichen sind. Die Schätzunsicherheit stellt damit einen separaten Risikofaktor dar. Die Vernachlässigung dieses "Meta-Risikos" bei der Risikobewertung führt daher zu einer ineffizienten Kapitalallokation. Der folgende Beitrag befasst sich mit der Frage, wie Schätzunsicherheit bei der Kreditrisikobewertung berücksichtigt werden kann. Hierbei erfolgt eine Fokussierung auf die Risikoparameter Ausfallwahrscheinlichkeit und Ausfallkorrelation zwischen Unternehmen in einer Periode (im Folgenden auch als Korrelation bezeichnet).

 $^{^{*}}$ Der Autor bedankt sich bei dem Gutachter und bei Joachim Wilde für ihre Hinweise und Kommentare.

¹ Vgl. Gleiβner/Romeike (2008), S. 8.

Die mit der Schätzung von Modellparametern verbundenen Probleme sind in der Literatur bekannt. So fordert der Baseler Ausschuss für Bankenaufsicht, dass im Bankensektor für die mit der Schätzung der Modellparameter verbundenen Fehler Sicherheitszuschläge zu berücksichtigen sind, die in Beziehung zur möglichen Fehlerspannweite stehen.² Der Ausschuss sagt jedoch wenig darüber aus, wie diese Sicherheitszuschläge zu bestimmen sind. In der Literatur wird die Verwendung von Konfidenzintervallen beziehungsweise von Konfidenzregionen zur Beschreibung von Schätzunsicherheit diskutiert. Dieser Ansatz findet auch verstärkt bei der Kreditrisikobewertung Berücksichtigung. So wird beispielsweise hinsichtlich der Ausfallwahrscheinlichkeit diskutiert, die mit ihrer Schätzung verbundene Unsicherheit beispielsweise durch Wald-, Agresti-Coull- oder Jeffrey-Intervalle, aber auch auf Bootstrapping basierende Intervalle zu beschreiben.³ Gegen die Verwendung dieser für die Ausfallwahrscheinlichkeit diskutierten Intervalle spricht jedoch, dass sie die Unabhängigkeit der Ausfallereignisse voraussetzen. Modifikationen wie von Miao/Gastwirth (2004) vorgeschlagen, berücksichtigen zwar Abhängigkeiten, aber nur, wenn sie zwischen im Datensatz direkt aufeinanderfolgenden Beobachtungen vorliegen.⁴ Beide Annahmen sind für die Kreditportfoliorisikomodellierung nicht besonders geeignet, da von Abhängigkeiten zwischen allen Kreditnehmern eines Portfolios auszugehen ist. Unsicherheit bei der Bewertung der Abhängigkeitsstruktur untersuchen beispielsweise Cassart et al. (2007).

Konfidenzregionen, bei denen die oben beschriebenen Annahmen zur Unabhängigkeit nicht erforderlich sind, beschreiben beispielsweise *Höse* (2007) und *Hamerle* et al. (2005). Diese Autoren entwickeln Modelle, die es ermöglichen, bei der simultanen Schätzung von Ausfallwahrscheinlichkeiten und Ausfallkorrelationen asymptotische Konfidenzregionen für beide Parameter abzuleiten. Auch befassen sie sich mit der Frage, welchen Einfluss die Schätzunsicherheit auf den Value at Risk (VaR) der Verlustverteilung eines Kreditportfolios und damit auf den ökonomischen Eigenkapitalbedarf eines Unternehmens hat. Die verwendeten asymptotischen Konfidenzintervalle basieren jedoch auf der Annahme, dass die auf Basis einer Maximum-Likelihood-Schätzung geschätzten Parameter asymptotisch normalverteilt sind.⁵ So wird unter anderem vorausgesetzt, dass Daten für

 $^{^2\,}$ Vgl. Basel Committee on Banking Supervision (2005), RN 451.

³ Vgl. Christensen et al. (2004); Dannenberg (2008); Hanson/Schuermann (2006); Lawrenz (2008); Pluto/Tasche (2005); Stein (2003); Trück/Rachev (2005).

⁴ Vgl. Miao/Gastwirth (2004), S. 124 ff.

⁵ Vgl. *Hamerle* et al. (2005), S. 11.

einen historisch sehr langen Zeitraum zur Verfügung stehen.⁶ Diese Annahme ist für die Praxis möglicherweise wenig realistisch. Alternativen zu asymptotischen Konfidenzregionen könnten auf Bootstrapping basierende Regionen darstellen. Ein wesentlicher Vorteil des Bootstrappings ist darin zu sehen, dass es frei von restriktiven Annahmen hinsichtlich der Parameter ist.⁷ Das heißt, die Verletzung der Annahme der asymptotischen Normalverteilung der Maximum-Likelihood-Schätzer wäre für das Bootstrapping unproblematisch. Der Nachteil des Bootstrappings besteht jedoch darin, dass eine analytische Berechnung nicht möglich ist. Damit ist diese Methode deutlich rechen- und damit zeitintensiver als die asymptotische Lösung. Vor diesem Hintergrund stellt sich die Frage, ab welcher Anzahl historisch verfügbarer Perioden beide Methoden zu einer ähnlichen Einschätzung des Kreditausfallrisikos bei Berücksichtigung von Schätzunsicherheit führen und damit die Verwendung eines asymptotischen Ansatzes unbedenklich ist. Im Folgenden soll dieser Frage anhand einer Simulationsstudie nachgegangen werden. Als Kriterium der Vergleichbarkeit beider Methoden dienen hier die Mittelwerte der VaR-Verteilungen. Die asymptotische Konfidenzregion wird durch eine von Höse (2007) vorgeschlagene Wald-Konfidenzregion beschrieben. Höse untersucht zwar, inwiefern Schätzunsicherheit das ökonomische Kapital beeinflusst. Jedoch nutzt sie hierfür einen Ansatz zur Berechnung von Eigenkapitalanforderungen nach Basel II, in dem die Korrelation aus der Ausfallwahrscheinlichkeit berechnet wird.⁸ Wie aus der von ihr vorgeschlagenen Konfidenzregion das ökonomische Eigenkapital ermittelt werden kann, diskutiert sie jedoch nicht. An dieser Stelle knüpft der vorliegende Artikel an. Es wird gezeigt, wie auf Grundlage der Wald-Konfidenzregion das ökonomische Eigenkapital bestimmt werden kann. Darauf aufbauend ist es hier möglich, die oben formulierte Frage nach der Eignung der vorgeschlagenen asymptotischen Konfidenzregion zur Beurteilung des ökonomischen Eigenkapitalbedarfs zu diskutieren.

Der folgenden Untersuchung liegt ein Beta-Binomial-Modell zugrunde. Der Einfachheit halber wird ein Ein-Ratingklassenfall betrachtet. Bei dem Beta-Binomial-Modell handelt es sich um ein Kreditportfoliomodell, welches den Bernoulli-Mischungsmodellen zuzuordnen ist. ⁹ Die Ber-

⁶ Vgl. Höse (2007), S. 136.

⁷ Vgl. Chernick (2008), S. 8 ff.

 $^{^8}$ Vgl. Basel Committee on Banking Supervision (2005), RN 330; Höse (2007), S. 140 ff., S. 173 ff.

 $^{^9}$ Das Beta-Binomial-Modell entspricht weitgehend der Ein-Faktor-Version von CreditRisk+ (Vgl. Frey/McNeil (2003), S. 69).

noulli-Mischungsmodelle zählen zu den bekanntesten Ansätzen für die Modellierung von abhängigem Kreditausfallverhalten. Im folgenden Abschnitt wird dieses Modell zunächst beschrieben. In Abschnitt III wird dargestellt, wie asymptotische beziehungsweise auf dem Bootstrapping beruhende Konfidenzregionen hergeleitet werden. Abschnitt IV erläutert, wie basierend auf den Konfidenzregionen die Verteilungen der Values at Risk abgeleitet werden. In Abschnitt V wird anhand einer Simulationsstudie untersucht, ob durch die Verwendung asymptotischer Konfidenzregionen der Value at Risk und damit indirekt auch der ökonomische Eigenkapitalbedarf in Abhängigkeit von der verfügbaren Kredithistorie signifikant über- oder unterschätzt wird. Abschließend werden in Abschnitt VI die Ergebnisse der Arbeit zusammengefasst und weiterer Forschungsbedarf formuliert.

II. Das verwendete Beta-Binomial-Modell

Zur Modellierung des Kreditportfoliorisikos wird zur vereinfachten Veranschaulichung im Folgenden ein Bernoulli-Mischungsmodell mit einer Bonitäts- beziehungsweise Ratingklasse unterstellt. Die Bernoulliverteilte Ausfallvariable H_{tn} eines Kreditnehmers n $(n = 1, 2, ..., N_t)$ nehme in der Periode t den Wert Eins an, wenn dieser ausfällt. Sonst sei H_{tn} Null. Alle Forderungen gegen einen Kreditnehmer n innerhalb einer Periode t werden zu einer Forderung zusammengefasst. Die durchschnittliche Bonität aller Kreditnehmer der Ratingklasse in Periode t wird durch die Zufallsvariable $\tilde{\pi}_t$ $(t=1,\ 2,\ ...,\ T)$ (stochastische Ausfallwahrscheinlichkeit der Ratingklasse) beschrieben. Beliebige Realisationen des Vektors aller stochastischen Ausfallwahrscheinlichkeiten $\tilde{\tilde{\pi}}:=$ $(\tilde{\pi}_1, \tilde{\pi}_2, \dots, \tilde{\pi}_T)$ seien durch $\vec{\pi} := (\pi_1, \pi_2, \dots, \pi_T) \ ((\pi_1, \pi_2, \dots, \pi_T) \in (0,1)^T)$ bezeichnet. Im Beta-Binomial-Modell wird für $\tilde{\pi}_t$ eine Betaverteilung unterstellt. Diese hängt unter anderem auch von einer Korrelation ϱ zwischen verschiedenen Ausfällen in einer Periode ab. Ist allerdings ein bestimmter Wert π_t (und damit zum Beispiel eine gute oder schlechte Konjunktur) gegeben, wird (bedingte) Unabhängigkeit zwischen den Ausfallvariablen H_{tn} angenommen. Die auf eine zufällige Realisation bedingten Verteilungen der Ausfallvariablen H_{tn} sind somit stochastisch unabhängige (bedingt unabhängige) Bernoulliverteilungen und es gilt:

(1)
$$H_{tn}|\vec{\tilde{\pi}} = \vec{\pi} \stackrel{\text{unabhängig}}{\sim} Bin(1;\pi_t), \quad n = 1, 2, \dots, N_t.$$

Die Anzahl der Ausfälle H_t am Ende einer Periode t ergibt sich aus der Summe der Ausfallvariablen H_{tn} :

Berücksichtigung von Schätzunsicherheit bei der Kreditrisikobewertung 563

(2)
$$H_t := \sum_{n=1}^{N_t} H_{tn}, \quad t = 1, 2, ..., T,$$

wobei N_t die Portfoliogröße bezeichnet. Damit ergeben sich als bedingte Verteilungen der Ausfallvariablen Binomialverteilungen:

$$(3) \hspace{3cm} H_t \big| \hspace{0.5mm} \vec{\tilde{\pi}} = \vec{\pi} \sim Bin(N_t; \pi_t).$$

Da es sich bei den Realisationen π_t um zufällige Ausprägungen von $\tilde{\pi}_t$ handelt, wird im Bernoulli-Mischungsmodell eine Annahme hinsichtlich der $\tilde{\pi}_t$ zugrunde liegenden Verteilung $F_{\tilde{\pi}_t}(\pi_t)$ getroffen. Die Mischung dieser Verteilung mit den sich aus (3) ergebenden Binomialwahrscheinlichkeiten führt zur unbedingten Wahrscheinlichkeitsfunktion der Anzahl der Ausfälle H_t :

(4)
$$P(H_t = h_t) = \int_{0}^{1} \binom{N_t}{h_t} \pi_t^{h_t} (1 - \pi_t)^{N_t - h_t} dF_{\tilde{\pi}_t}(\pi_t).$$

Im hier verwendeten Beta-Binomial-Modell werden die stochastischen Ausfallwahrscheinlichkeiten durch Betaverteilungen modelliert. Damit ergibt sich als unbedingte Wahrscheinlichkeitsfunktion der Anzahl der Ausfälle H_t :

$$(5) P(H_t = h_t) = \int\limits_0^1 \binom{N_t}{h_t} \pi_t^{h_t} (1 - \pi_t)^{N_t - h_t} \frac{\pi_t^{\alpha - 1} (1 - \pi_t)^{\beta - 1}}{B(\alpha, \beta)} \, d\, \pi_t,$$

wobei $B(\alpha, \beta)$ die Betafunktion:

(6)
$$B(\alpha,\beta) = \int_{0}^{1} x^{\alpha-1} (1-x)^{\beta-1} dx$$

mit $\alpha \in (0;\infty)$ und $\beta \in (0;\infty)$ bezeichnet. ¹⁰ Zwischen der Ausfallkorrelation ϱ beziehungsweise der erwarteten Ausfallwahrscheinlichkeit p und den Parametern der Betafunktion α , β besteht folgender funktionaler Zusammenhang:

¹⁰ Vgl. zum Bernoulli-Mischungsmodell und zur Beta-Binomialverteilung *Höse* (2007), S. 34 ff.; *Frey/McNeil* (2003), S. 67 f.; *Embrechts/Frey/McNeil* (2005), S. 352 ff.

(7)
$$\alpha = \frac{p(1-\varrho)}{\varrho} \quad \text{und} \quad \beta = \frac{(1-p)(1-\varrho)}{\varrho}.$$

Damit sind $0 < \varrho < 1$ und 0 . Es wird weiter angenommen, dass gegen alle Kreditnehmer eine Forderung (Exposure at Default) in Höhe von Eins besteht. Wenn es zu einem Ausfall kommt, sei unterstellt, dass der gesamte Forderungsbetrag dieses Kreditnehmers ausfällt (Loss given Default = Eins). Damit reduziert sich die Verlustverteilung des Kreditportfolios auf die Verteilung der Anzahl der innerhalb einer Periode <math>t auftretenden Kreditausfälle H_t .

Zur Parametrisierung dieses Modells ist die Schätzung der beiden Parameter ϱ und p erforderlich. Die simultane Schätzung dieser beiden Größen erfolgt mittels Maximum-Likelihood-Methode. Hierfür wird unterstellt, dass die zugrunde liegende unbekannte Ausfallwahrscheinlichkeit p und Ausfallkorrelation ϱ im Periodenvergleich konstant sind. Es liegen keine periodenübergreifenden Abhängigkeiten vor. Folgende auf Gleichung (5) basierende Log-Likelihood-Funktion wird maximiert: 12

$$l(p,\varrho,\vec{h}) = c + \sum_{t=1}^{T} \ln \Gamma \left(h_t - p + \frac{p}{\varrho} \right) + \ln \Gamma \left(N - h_t - 1 + p + \frac{1-p}{\varrho} \right)$$

$$- T \left[\ln \Gamma \left(\frac{p(1-\varrho)}{\varrho} \right) + \ln \Gamma \left(\frac{(1-p)(1-\varrho)}{\varrho} \right) + \ln \Gamma \left(N - 1 + \frac{1}{\varrho} \right) \right]$$

$$+ T \ln \Gamma \left(\frac{1-\varrho}{\varrho} \right).$$

Hierbei beschreibt \vec{h} den Vektor historisch beobachteter Ausfallzahlen. Es wird unterstellt, dass sich die Portfoliogröße $N=N_t$ mit $t=1,\ 2,\ldots,\ T$ im Zeitverlauf nicht ändert, wobei T die Anzahl der historisch beobachtbaren Perioden darstellt. Γ bezeichnet die Gammafunktion:

(9)
$$\Gamma(a) = \int\limits_0^\infty s^{a-1} e^{-s} ds.$$

Die Konstante c ist unabhängig von den Modellparametern und kann daher bei der Maximierung vernachlässigt werden. Die beiden Schätzer \tilde{p}_T^{ML} und $\tilde{\varrho}_T^{ML}$, die diese Funktion maximieren, werden numerisch be-

¹¹ Vgl. Anhang 1.

¹² Vgl. Höse (2007), S. 149.

stimmt. Die Parameter der Betafunktion können auf Grundlage dieser beiden Schätzer ermittelt werden:

$$\tilde{\alpha}_T^{ML} = \frac{\tilde{p}_T^{ML}(1-\tilde{\varrho}_T^{ML})}{\tilde{\varrho}_T^{ML}} \quad \text{und} \quad \tilde{\beta}_T^{ML} = \frac{(1-\tilde{p}_T^{ML})(1-\tilde{\varrho}_T^{ML})}{\tilde{\varrho}_T^{ML}}.$$

Durch Einsetzen dieser beiden Parameter und N in Gleichung (5) kann die Verteilung der Anzahl der Ausfälle $P(H_t=h_t)$ innerhalb einer Periode abgeleitet werden. Diese berücksichtigt jedoch noch nicht die mit der Schätzung verbundene Schätzunsicherheit. Im folgenden Abschnitt wird gezeigt, wie diese durch Konfidenzregionen beschrieben werden kann.

III. Herleitung der Konfidenzregion

Höse (2007) konstruiert eine asymptotische Wald-Konfidenzregion für die beiden Parameter Ausfallkorrelation und Ausfallwahrscheinlichkeit. 13 Diese wird für einen Parametervektor (p,ϱ) berechnet mit:

(11)
$$T((\widehat{\boldsymbol{p}}_{T}^{ML}, \widehat{\boldsymbol{\varrho}}_{T}^{ML}) - (\boldsymbol{p}, \boldsymbol{\varrho})) I(\widehat{\boldsymbol{p}, \boldsymbol{\varrho}})_{T}((\widehat{\boldsymbol{p}}_{T}^{ML}, \widehat{\boldsymbol{\varrho}}_{T}^{ML}) - (\boldsymbol{p}, \boldsymbol{\varrho}))' \leq \chi_{2.1-q}^{2},^{14}$$

wobei $\chi^2_{2,1-q}$ für 0 < q < 1 das q-Quantil einer Chiquadratverteilung mit zwei Freiheitsgraden bezeichnet. $\widehat{I(p,\varrho)_T}$ bezeichnet eine zu schätzende Informationsmatrix. Die Elemente dieser Informationsmatrix können dabei wie folgt bestimmt werden:¹⁵

 $^{^{13}}$ Höse (2007) konstruiert darüber hinaus auch weitere Konfidenzregionen. Insbesondere eine auf dem Likelihood-Verhältnis basierende Konfidenzregion (LV-Region) könnte für kurze Datenhistorien möglicherweise besser geeignet sein als das hier verwendete Wald-Intervall. Allerdings ist die LV-Region so konstruiert, dass ein gegebenes Vertrauensniveau hinsichtlich der beiden Parameter mindestens eingehalten wird. Dieses Vorgehen ist möglicherweise problematisch. Brown/ Cai/DasGupta (2001), S. 113, lehnen beispielsweise das für Anteilswerte im Unabhängigkeitsfall konstruierte Clopper-Pearson-Intervall, welches ebenfalls ein gegebenes Vertrauensniveau mindestens einhält, ab, weil sie es für "wastefully conservative" halten. Für die LV-Region spricht eine von Höse durchgeführte Simulationsstudie, welche der LV-Region eine hohe Abdeckwahrscheinlichkeit attestiert (Höse (2007), S. 167). Diese Studie erfolgt jedoch nur für ein Portfolio $(N = 5000, p = \rho = 0.05)$. Brown/Cai/DasGupta (2001), S. 102, weisen allerdings darauf hin, dass die Abdeckwahrscheinlichkeit eines Konfidenzintervalls sehr sensibel auf den Stichprobenumfang reagieren kann. Daher wird das für die LV-Region sprechende Argument hier geringer gewichtet als das gegen sie sprechende Argument und daher im Folgenden das vorgeschlagene Wald-Intervall betrachtet.

¹⁴ Vgl. Höse (2007), S. 87.

¹⁵ Vgl. Höse (2007), S. 151.

$$\begin{split} I(p,\varrho)_{11} &= (1-\varrho)^2 \sum_{i=0}^{N-1} \left[\frac{P(H_t \geq i+1)}{(p(1-\varrho)+i\varrho)^2} + \frac{P(H_t \leq N-i-1)}{((1-p)(1-\varrho)+i\varrho)^2} \right], \\ (12) \quad I(p,\varrho)_{12} &= I(p,\varrho)_{21} = \frac{\varrho-1}{\varrho} \sum_{i=0}^{N-1} \left[\frac{pP(H_t \geq i+1)}{(p(1-\varrho)+i\varrho)^2} + \frac{(1-p)P(H_t \leq N-i-1)}{((1-p)(1-\varrho)+i\varrho)^2} \right], \\ I(p,\varrho)_{22} &= \frac{1}{\varrho^2} \sum_{i=0}^{N-1} \left[\frac{p^2P(H_t \geq i+1)}{(p(1-\varrho)+i\varrho)^2} + \frac{(1-p)^2P(H_t \leq N-i-1)}{((1-p)(1-\varrho)+i\varrho)^2} - \frac{1}{(1+\varrho(i-1))^2} \right]. \end{split}$$

Durch Einsetzen der Parameter $p=\tilde{p}_T^{ML}$ und $\varrho=\tilde{\varrho}_T^{ML}$ in (12) kann die Informationsmatrix geschätzt werden.

Die von Höse (2007) vorgeschlagene Konfidenzregion kann jedoch nur für $T \to \infty$ das vorgegebene Vertrauensniveau gewährleisten. 16 Diese Einschränkung kann aus zwei Gründen problematisch sein. Zum einen stehen häufig nur kurze Zeiträume zur Schätzung der Parameter zur Verfügung. Zum anderen werden Ausfallwahrscheinlichkeiten von Bonitätsklassen häufig nur auf Jahresbasis bewertet. Ein auf Jahresbasis geschätztes Modell erfordert also Beobachtungen, die viele Jahre in die Vergangenheit reichen, um asymptotische Konfidenzregionen zu schätzen. Es stellt sich damit zum einen die Frage nach der Datenverfügbarkeit und zum anderen nach der Aktualität von weit in die Vergangenheit reichenden Daten. Höse (2007) bewertet die Güte der von ihr dargestellten asymptotischen Konfidenzregion für Kredithistorien von T = 16 und T = 256 auf Grundlage empirischer Überdeckungshäufigkeiten. Sie stellt fest, dass vor allem für die Korrelation in kurzen Kredithistorien dieses Intervall wenig geeignet ist. Für T = 256 erzielt sie jedoch bereits für beide Parameter eine gute Abdeckung.¹⁷ Da hier jedoch die Konfidenzregion als ein Instrument zur Bestimmung des Risikoumfangs genutzt wird, könnte eine Beurteilung der Eignung einer Konfidenzregion auf Basis von Überdeckungshäufigkeiten zu kurz greifen. Das heißt, dass zwei Konfidenzregionen mit derselben empirischen Überdeckungshäufigkeit dennoch zu unterschiedlichen Einschätzungen des ökonomischen Eigenkapitals gelangen könnten. Aus diesem Grund erfolgt hier die Untersuchung auf Grundlage dieser Größe.

Wie eingangs beschrieben, kann das Bootstrapping für kleine Stichproben die geeignetere Methode zur Herleitung von Konfidenzintervallen beziehungsweise -regionen sein, da auf restriktive Annahmen hinsichtlich der Verteilung der Maximum-Likelihood-Schätzer verzichtet werden

¹⁶ Vgl. Höse (2007), S. 136.

¹⁷ Vgl. Höse (2007), S. 160 ff.

kann. Es wird zwischen nichtparametrischem und parametrischem Bootstrapping unterschieden. 18 Hier soll die parametrische Version zur Anwendung kommen. 19 Diese setzt voraus, dass eine Vorstellung hinsichtlich der den historischen Beobachtungen zugrunde liegenden Verteilung existiert. Für diese Arbeit entspricht diese der in Gleichung (5) beschriebenen Wahrscheinlichkeitsverteilung der Anzahl der Kreditausfälle, welche, wie oben dargestellt, auf Grundlage historischer Beobachtungen parametrisiert werden kann. Aus dieser Verteilung werden beim parametrischen Bootstrapping entsprechend der Anzahl der historisch verfügbaren Perioden T zufällige Ausfallzahlen mit Zurücklegen gezogen. Diese T Ausfallzahlen repräsentieren eine Bootstrap-Stichprobe, für welche die Ausfallwahrscheinlichkeit und Ausfallkorrelation entsprechend Gleichung (8) geschätzt werden können. Durch das wiederholte Erzeugen von Bootstrap-Stichproben kann eine Vielzahl an Paaren der beiden zu schätzenden Parameter erzeugt und ausgewertet werden. Zusammenfassend seien hier die einzelnen Schritte zur Ermittlung der Bootstrap-Intervalle dargestellt:

- (S1) Parametrisierung der Verteilung aus Gleichung (5) unter Verwendung der Gleichungen (8) und (7) auf Grundlage der historisch verfügbaren Daten.
- (S2) Ziehen (mit Zurücklegen) von T zufälligen Ausfallzahlen auf Basis der in S1 parametrisierten Verteilung (Erzeugen einer Bootstrap-Stichprobe).
- (S3) Schätzen der Parameter \tilde{p}_T^{ML} und $\tilde{\varrho}_T^{ML}$ auf Grundlage der in S2 erzeugten Bootstrap-Stichprobe unter Verwendung von Gleichung (8).
- (S4) Speichern des in S3 ermittelten Parameterpaares.
- (S5) x-maliges Wiederholen der Schritte S2-S4.

Im Folgenden soll zur Veranschaulichung ein Beispiel dienen. Für dieses sei angenommen, dass ein N=500 Kreditnehmer umfassendes Portfolio betrachtet wird. Es können Beobachtungen zu Kreditausfallereignissen für T=5 historische Perioden zur Verfügung gestellt werden. In den historischen Perioden hatte das Portfolio ebenfalls eine Größe von $N_t=500$ mit $t=1,\ldots,5$. Es wurden in den einzelnen Jahren

¹⁸ Vgl. Vose (2005), S. 181 ff.; Chernick (2008), S. 120 ff.

¹⁹ Hier wird als zugrunde liegende Wahrscheinlichkeitsverteilung der Kreditausfälle die Beta-Binomial-Verteilung aus Gleichung (5) unterstellt. Da damit die den historischen Daten zugrunde liegende Verteilung im Modell als bekannt angenommen wird, ist die parametrische Bootstrap-Methode angemessen.

 $\vec{k'}=(23;\ 24;\ 2;\ 2;\ 24)$ Kreditausfälle beobachtet. Damit schwankt die Ausfallquote $AQ_{\rm t}$, also das Verhältnis von Ausfallzahl und Portfoliogröße zwischen $0.4\,\%$ und $4.8\,\%$. Im Durchschnitt der fünf Jahre fielen $3\,\%$ der Kreditnehmer aus. In Tabelle 1 werden die Rahmenbedingungen des Beispiels zusammenfassend dargestellt.

t	h_t	N_t	$AQ_t = {h_t}\!/\!N_t$
1	23	500	4,6 %
2	24	500	4,8 %
3	2	500	0,4 %
4	2	500	0,4 %
5	24	500	4,8 %

Tabelle 1

Rahmenbedingungen des Beispiels

Auf Grundlage der in Tabelle 1 beschriebenen Beobachtungen werden die Parameter $\tilde{p}_T^{ML}=2,98\%$ und $\tilde{\varrho}_T^{ML}=0,0245$ unter Verwendung von Gleichung (8) geschätzt. Die Informationsmatrix wird entsprechend den Gleichungen (12) unter Verwendung von \tilde{p}_T^{ML} und $\tilde{\varrho}_T^{ML}$ bestimmt:

(13)
$$\widehat{I(p,\varrho)_T} = \begin{pmatrix} 1798, 47 & -633, 90 \\ -633, 90 & 811, 92 \end{pmatrix}.$$

Abbildung 1 veranschaulicht 2.500 mit Bootstrapping erzeugte Parameterpaare und die Wald-Konfidenzregion zum 95%-Niveau für dieses Beispiel. Es zeigt sich, dass die asymptotische Konfidenzregion auch Werte im negativen Bereich der beiden Achsen aufweist. Hierbei handelt es sich um rein theoretische Lösungen. Wie in Abschnitt II formuliert, ist die Ausfallkorrelation und die Ausfallwahrscheinlichkeit im Beta-Binomial-Modell stets größer als Null. Dennoch wird deutlich, dass die asymptotische Konfidenzregion und die mit Bootstrapping erzeugten Wertepaare auch im positiven Quadranten nicht identisch sind. So liegen 6,84% beziehungsweise 171 der mit Bootstrapping erzeugten Wertepaare außerhalb der dargestellten asymptotischen Konfidenzregion. Bei Übereinstimmung der Regionen wären 5% (125) zu erwarten gewesen. Wird das Vertrauensniveau auf 99% erhöht, liegen mit 3,12% im Verhältnis sogar noch deutlich mehr der mit Bootstrapping erzeugten Parameterpaare außerhalb der asymptotischen Konfidenzregion. Andererseits führt eine

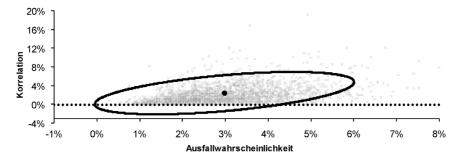


Abbildung 1: Mit Bootstrapping erzeugte Wertepaare $(\tilde{p}_{T}^{ML}, \tilde{\rho}_{T}^{ML})$ (graue Punkte), das Parameterpaar der Ausgangsstichprobe (schwarzer Punkt) und asymptotische Konfidenz region 1 - q = 95% (schwarze Linie)

Absenkung des Vertrauensniveaus auf 90% dazu, dass mit 9,04% deutlich weniger der mit Bootstrapping erzeugten Parameterpaare außerhalb der asymptotischen Konfidenzregion liegen, als es zu erwarten gewesen wäre. Eine Übereinstimmung wird hier im Beispiel bei einem Vertrauensniveau von etwa 91,6% erreicht.

Es ist zu vermuten, dass dies zu unterschiedlichen Kreditrisikobewertungen führen kann, wenn zur Beschreibung der Schätzunsicherheit eine dieser beiden Methoden gewählt wird. Im Folgenden wird daher für eine Vielzahl von möglichen Beobachtungen untersucht, ob durch die Verwendung von asymptotischen Konfidenzregionen das Kreditrisiko im Vergleich zur Verwendung von auf Bootstrapping basierenden Konfidenzregionen signifikant über- oder unterschätzt wird. Da Höse (2007) für T = 256 eine Abweichung der Schätzer von der Normalverteilungsannahme als unproblematisch für den Einsatz der Wald-Konfidenzregion ermittelt, ist zu vermuten, dass Bootstrapping und asymptotische Methode für T < 256 zu einer vergleichbaren Risikoeinschätzung führen.

IV. Herleitung der Verteilung des Value at Risk

Eine etablierte Kennzahl zur Bewertung von Risiken stellt der Value at Risk (VaR_a) dar. Dieser ist als eine maximale Abweichung von einem Referenzwert beschrieben, die für ein gegebenes Konfidenzniveau alpha innerhalb einer Periode eintreten kann.²⁰ Wird die Abweichung zur Ge-

²⁰ Vgl. Kapalanski (2002), S. 3; Albrecht/Maurer (2005), S. 123, und dort zitierte Literatur.

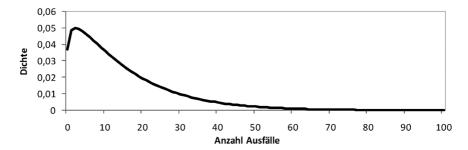


Abbildung 2: Dichtefunktion der Portfolioverluste $(\tilde{p}_{T}^{ML} = 2,98\%, \tilde{\varrho}_{T}^{ML} = 0,0245, N = 500)$

winnschwelle betrachtet, kann aus dem Value at Risk auch der ökonomische Eigenkapitalbedarf eines Unternehmens abgeleitet werden. Der Value at Risk stellt damit eine entscheidende Größe bei der Risikobewertung dar.

Da hier angenommen wird, dass der Exposure at Default und der Loss given Default jeweils den Wert Eins annehmen, reduziert sich das Kreditausfallrisiko auf die in Gleichung (5) beschriebene Verteilung. Für ein gegebenes Wertepaar $(\tilde{p}_T^{ML}, \tilde{\varrho}_T^{ML})$ kann diese parametrisiert und hinsichtlich ihrer Quantile ausgewertet werden. Für das oben beschriebene Beispiel ergibt sich die in Abbildung 2 dargestellte Verteilung. Diese weist einen VaR₉₉% von rund 63 Ausfällen auf, was einer Ausfallquote von 12,6% entspricht.

Wie im vorangegangenen Abschnitt beschrieben, besteht hinsichtlich der Parameterschätzung Unsicherheit. Das heißt, dass das dem Risiko zugrunde liegende tatsächliche, aber unbekannte Parameterpaar durchaus auch andere Werte als den Maximum-Likelihood-Schätzer annehmen kann. Dabei umfasst eine Konfidenzregion alle jene Parameterpaare, von denen mit einer Wahrscheinlichkeit von 1-q eines das tatsächliche, aber unbekannte Wertepaar beschreibt. Im obigen Fall liegt beispielsweise das Wertepaar $(p=5\%,\ \varrho=0.04)$ auch in der Konfidenzregion zum Vertrauensniveau von 95 %. Würde also ein solches Vertrauensniveau angestrebt werden, könnte auch dieses Parameterpaar das unbekannte, aber tatsächliche Paar sein. In diesem Fall würde der VaR $_{99\,\%}$ auf 20,2 % steigen. Andererseits ist bei diesem Vertrauensniveau auch das Wertepaar $(p=1\%,\ \varrho=0.01)$ ein Element der Konfidenzregion. Sollte es sich hierbei um das tatsächlich zugrunde liegende Wertepaar handeln, dann entspräche der VaR $_{99\,\%}$ der Ausfallquote nur 5 %.

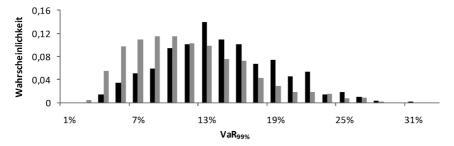


Abbildung 3: Verteilung des VaR_{99%} bei Anwendung der asymptotischen Methode (schwarze Balken) und Bootstrapping (graue Balken) zur Modellierung der Schätzunsicherheit

Basierend auf einer der asymptotischen Konfidenzregion zugrunde liegenden Verteilung beziehungsweise basierend auf Bootstrapping ist es möglich, mittels Monte-Carlo-Simulation eine Verteilung des VaR des Kreditrisikos abzuleiten. ²¹ Die Monte-Carlo-Simulation wird gewählt, da sie sowohl für eine Ableitung aus der asymptotischen Konfidenzregion als auch bei Verwendung von Bootstrapping genutzt werden kann. Mit beiden Methoden wird jeweils zufällig eine große Anzahl Parameterpaare erzeugt. Bei Verwendung der asymptotischen Methode werden diese aus der der Konfidenzregion zugrunde liegenden Verteilung gezogen. Diese Wertepaare werden in Gleichung (5) eingesetzt und aus den so parametrisierten Verteilungen die jeweiligen VaR abgeleitet. Eine ausführliche Beschreibung der Vorgehensweise erfolgt im Anhang 2. Für die im folgenden Abschnitt dargestellten Ergebnisse werden jeweils 1.000 VaR für jede Methode und Datenhistorie erzeugt und aus diesen die VaR-Verteilungen abgeleitet.

Für das oben beschriebene Beispiel ergeben sich die in Abbildung 3 dargestellten Verteilungen des VaR₉₉%. Es wird deutlich, dass bei Anwendung der asymptotischen Methode (schwarze Balken) hier im Beispiel die Verteilung des VaR₉₉% nach rechts verschoben ist. Die Verteilung des VaR₉₉% bei Anwendung der asymptotischen Methode weist einen Mittelwert von 13,6% auf, was in etwa 68 Ausfällen entspricht. Dieser ist deutlich größer als der Mittelwert der mit Bootstrapping ermittelten Verteilung in Höhe von 10,9% (etwa 55 Ausfälle). Bei der Interpretation dieser Werte ist zu berücksichtigen, dass der Mittelwert einer VaR-Verteilung keinen direkten Rückschluss auf den ökonomischen Ei-

²¹ Vgl. Dannenberg (2007), S. 632 f.

genkapitalbedarf eines Unternehmens zulässt. Hierfür ist es erforderlich, die Verlustverteilung unter Berücksichtigung von Schätzunsicherheit herzuleiten. Auf Grundlage dieser Verteilung kann der VaR_a bestimmt werden. Die Herleitung dieser Verlustverteilung ist allerdings mit einer zusätzlichen Simulation verbunden, wodurch die gesamte Simulationsdauer erheblich erhöht wird.

Um hier die Simulationszeit in einem vertretbaren Rahmen zu halten, werden im Folgenden nicht die VaR_a verglichen. Vielmehr dient ein Vergleich der Mittelwerte der VaR-Verteilungen als Indikator dafür, ab welcher Anzahl historisch verfügbarer Perioden der asymptotische Ansatz ähnliche Ergebnisse erzeugt wie Bootstrapping. Signifikant verschiedene Lageparameter dieser Verteilungen sind ein Hinweis dafür, dass beide Methoden zu unterschiedlichen Risikoeinschätzungen führen.

V. Vergleich der Verteilungen des VaR mittels Simulationsstudie

Eingangs wurde die Vermutung formuliert, dass asymptotische Konfidenzregionen zur Bewertung von Schätzunsicherheit bei der Kreditrisikobewertung wenig geeignet sein könnten, wenn nur eine geringe Anzahl historischer Perioden zur Verfügung steht, auf deren Grundlage die Parameterschätzung erfolgt. Hier soll anhand eines Vergleichs von Lageparametern der Verteilungen der VaR untersucht werden, ob sich diese signifikant voneinander unterscheiden. Es ist zu vermuten, dass mit zunehmender Anzahl historisch verfügbarer Perioden die Wahrscheinlichkeit abnimmt, dass die mit den beiden Verfahren ermittelten Lageparameter der VaR-Verteilungen signifikant voneinander abweichen. Als Lageparameter wird der Mittelwert der jeweiligen Verteilung betrachtet. Der Vergleich erfolgt auf Grundlage parametrischer Zweistichprobentests. Kann Varianzheterogenität angenommen werden, erfolgt der Test unter Verwendung eines approximativen Gaußtests. Wird hingegen Varianzhomogenität angenommen, erfolgt der Test auf Grundlage eines t-Tests. Varianzhomogenität wird unter Verwendung eines F-Tests überprüft.²² Im in Tabelle 1 dargestellten Fall ist beispielsweise der Mittelwert der auf der asymptotischen Konfidenzregion beruhenden VaR₉₉%-Verteilung zum 1%-Niveau signifikant größer als der auf Bootstrapping beruhenden Verteilung.

²² Vgl. Bleymüller/Gehlert/Gülicher (1998), S. 109 ff.

Da mit einem Zweistichprobentest nur verglichen werden kann, ob die beiden Methoden bei einer gegebenen Kreditrisikohistorie zu ähnlichen Ergebnissen führen, besteht die Möglichkeit, dass ein beobachtetes Ergebnis von der gewählten Kreditrisikohistorie abhängt. Würden beispielsweise in Tabelle 1 in den einzelnen Jahren andere Ausfallzahlen beobachtet werden, wäre es möglich, dass der Zweistichprobentest zu einem anderen Ergebnis geführt hätte. Um dies zu überprüfen, ist es erforderlich, für einen gegebenen historisch verfügbaren Zeitraum verschiedene Kredithistorien zu testen. Im Folgenden werden daher jeweils 200 Kredithistorien betrachtet. Diese werden erzeugt, indem für jede betrachtete historische Periode zufällig eine Anzahl Ausfälle aus dem Intervall [0;25] gleichverteilt gezogen wird. Die Gleichverteilung erscheint hier geeignet, da an dieser Stelle nur zu gewährleisten ist, dass 200 voneinander unabhängige Kredithistorien zur Verfügung gestellt werden. Alternativen, wie beispielsweise die Wahl anderer Intervalllängen oder die Ableitung der Ausgangswerte auf Basis zufällig parametrisierter Beta-Binomial-Verteilungen, würden zwar die Bandbreite der möglichen Ausgangswerte verändern. Substanzielle Auswirkungen auf das Ergebnis sind hierdurch allerdings nicht zu erwarten. Für die zufällig erzeugten Kredithistorien werden die Verteilungen der VaR abgeleitet und auf Unterschiede der Lageparameter untersucht. Auf diese Weise stehen für jede untersuchte Periodenlänge 200 Auswertungen zur Verfügung.

In Tabelle 2 werden die Ergebnisse der Simulationsstudie dargestellt. Untersuchungen erfolgen für die Periodenlängen T=5, T=25, T=50, T=75 und T=100, T=150. Die Ratingklassengröße wird über alle Perioden mit $N_t=500$ als konstant angenommen. Es wird jeweils der Anteil der untersuchten Stichproben angegeben, bei dem die asymptotische Methode zu einem signifikant höheren oder geringeren beziehungsweise nicht signifikant verschiedenen mittleren VaR im Vergleich zur Bootstrap-Methode führt. Die Untersuchung erfolgt für verschiedene Vertrauensniveaus des VaR_a , mit $a=90\,\%$, 95 %, 99 % und 99,9 %, wobei insbesondere das 99,9 %-Niveau für die Bankenpraxis von Interesse ist. Der Zweistichprobentest erfolgt zum 5 %-Niveau.

Es wird deutlich, dass der Anteil der Stichproben, bei denen keine signifikanten Unterschiede zwischen den Mittelwerten der VaR-Verteilungen gemessen werden, wie erwartet, mit der Periodenlänge zunimmt (vgl. Abbildung 4). Bei den hier untersuchten Periodenlängen führen erstmals für T=50 die beiden Methoden nicht bei allen Stichproben zu signifikanten Unterschieden. Wenn signifikante Unterschiede gemessen wur-

Tabelle~2 Mittelwertvergleich der Va
R-Verteilungen ($N_t=500$, Signifikanzniveau: 5 %)

	Die asymptotische Methode führt	Anteil der Beobachtungen				
	im Vergleich zum Bootstrapping zu	VaR _{90%}	VaR _{95%}	VaR _{99%}	VaR _{99,9%}	
	signifikant größeren mittleren VaR	100%	100%	100%	100%	
T = 5	signifikant kleineren mittleren VaR	0 %	0 %	0%	0 %	
	keinen signifikanten Unterschieden	0%	0%	0%	0 %	
T = 25	signifikant größeren mittleren VaR	100%	100%	100%	100%	
	signifikant kleineren mittleren VaR	0 %	0 %	0%	0 %	
	keinen signifikanten Unterschieden	0 %	0 %	0%	0 %	
T = 50	signifikant größeren mittleren VaR	45,5 %	61%	73,%	78%	
	signifikant kleineren mittleren VaR	0 %	0 %	0%	0 %	
	keinen signifikanten Unterschieden	$54,\!5\%$	39 %	26,5%	22 %	
T = 75	signifikant größeren mittleren VaR	22 %	25,5 %	34,5 %	47,5%	
	signifikant kleineren mittleren VaR	$4{,}5\%$	$2{,}5\%$	0,5 %	0 %	
	keinen signifikanten Unterschieden	73,5 %	72%	65 %	52,5 %	
T = 100	signifikant größeren mittleren VaR	4%	4,5 %	13 %	23,5 %	
	signifikant kleineren mittleren VaR	10%	5,5 %	3 %	1,5 %	
	keinen signifikanten Unterschieden	87%	87,5 %	80,5 %	76,5 %	
T = 150	signifikant größeren mittleren VaR	2%	3%	4%	6 %	
	signifikant kleineren mittleren VaR	10%	10 %	5 %	4 %	
	keinen signifikanten Unterschieden	88%	87%	91%	90 %	

den, waren die Mittelwerte der mit der asymptotischen Methode hergeleiteten Verteilung für T=5, T=25 und T=50 stets größer als die mit Bootstrapping generierten Mittelwerte. Ab T=75 werden auch signifikant kleinere Mittelwerte bei Verwendung der asymptotischen Methode beobachtet. Der Anteil dieser Stichproben nimmt dabei mit der Periodenlänge zu. Bis zu einer Periodenlänge von T=100 kann festgestellt werden, dass bei einem geringen Vertrauensniveau des VaR ein größerer Anteil der untersuchten Stichproben keine signifikanten Unterschiede im Vergleich zu den VaR mit hohem Vertrauensniveau aufweist. Dieser Unterschied ist jedoch bei T=150 nicht mehr zu beobachten. Es ist daher zu vermuten, dass im hier dargestellten Fall ab dieser Periodenlänge

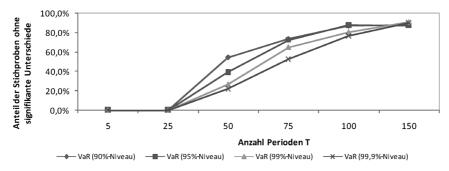


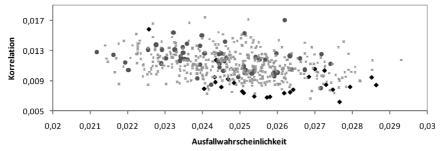
Abbildung 4: Anteil der Stichproben, bei denen keine signifikanten Unterschiede der Mittelwerte der VaR-Verteilungen bei Verwendung der asymptotischen Methode beziehungsweise Bootstrapping gemessen werden

die Ungleichheit zwischen den Verteilungen der VaR weniger durch die Periodenlänge, sondern vielmehr durch die Ratingklassengröße verursacht wird. 23 Das legt den Schluss nahe, dass, je nachdem welches Vertrauensniveau des VaR betrachtet wird, zwischen 100 und 150 historische Perioden zur Verfügung stehen müssen, um mit der asymptotischen Methode ähnliche Ergebnisse zu erzielen wie mit dem Bootstrapping.

Es stellt sich die Frage, ob ein Zusammenhang zwischen der gewählten Kredithistorie und der Wahrscheinlichkeit besteht, dass mit der asymptotischen Methode ein größerer beziehungsweise kleinerer Mittelwert der VaR-Verteilung beobachtet wird als bei Verwendung von Bootstrapping. Abbildung 5 zeigt für T = 100 und $VaR_{90\%}$ die Maximum-Likelihood-Schätzer der zugrunde liegenden Ausgangsstichproben und die Ergebnisse der Zweistichprobentests. 24 Die Periodenlänge T = 100 sowie das Niveau des VaR₉₀% wird gewählt, da hier für die drei Fälle, dass mit der asymptotischen Methode größere, kleinere beziehungsweise gleiche Mittelwerte gemessen werden, Beobachtungen vorliegen. Die Abbildung deutet darauf hin, dass in den Fällen, in denen mit der asymptotischen Methode signifikant größere Mittelwerte der VaR-Verteilung gemessen werden, in der Ausgangsstichprobe tendenziell eher geringe Korrelatio-

 $^{^{23}}$ Hier wurde nur die Anzahl der historisch verfügbaren Perioden als Quelle für die Schätzunsicherheit untersucht. Allerdings resultiert Schätzunsicherheit auch aus der Größe des Portfolios. Es ist daher zu erwarten, dass bei der Betrachtung größerer Portfolios auch in mehr als 90% der Beobachtungen keine signifikanten Unterschiede gemessen werden können.

²⁴ Für die Abbildung wurden zu den 200 Stichproben von Tabelle 2 zusätzlich 350 Stichproben ausgewertet.



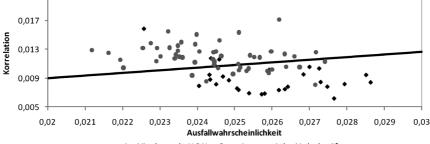
- ◆ Mittelwerte der VaR-Verteilung mit asymptotischer Methode größer
- Mittelwerte der VaR-Verteilung mit Bootstrapping größer
- * Mittelwerte der VaR-Verteilung gleich

Abbildung 5: Ergebnisse der Zweistichprobentests in Abhängigkeit von zugrunde liegenden Parameterpaaren verschiedener Ausgangsstichproben (VaR_{90%}, T = 100)

nen vorliegen. Werden mit Bootstrapping hingegen größere Mittelwerte der VaR-Verteilung beobachtet, liegen in der Ausgangsstichprobe tendenziell Beobachtungen mit hoher Korrelation vor.

Das Merkmal Korrelation könnte damit geeignet sein, um eine Abgrenzung zwischen den beiden Gruppen vorzunehmen, bei denen signifikant unterschiedliche Mittelwerte der VaR-Verteilungen beobachtet werden. Mit einer multivariaten Diskriminanzanalyse wird im Folgenden kurz untersucht, inwiefern eine Abgrenzung beider Gruppen, basierend auf den beiden Merkmalen Ausfallwahrscheinlichkeit und Korrelation, möglich ist. Abbildung 6 zeigt die beiden Gruppen. Die eingezeichnete Trennlinie beschreibt die Merkmalspaare, für welche die Diskriminanzfunktion den Wert Null annimmt. Die mittleren Werte der Diskriminanzfunktionen (Wilks-Lambda) sind für beide Parameter zwischen beiden Gruppen hochsignifikant verschieden (Signifikanzniveau < 1%). Dabei weist die Ausfallkorrelation mit $D_{\rm Korrel}$ = 0,67 eine deutlich höhere isolierte Diskriminanz auf als die Ausfallwahrscheinlichkeit mit $D_{\rm PD}$ = 0,22. Beide Merkmale weisen zusammen eine Diskriminanz in Höhe von $D_{\rm ges}$ = 0,72 auf.

Eine Auswertung für T=75 und $\mathrm{VaR_{90\,\%}}$ führt zu ähnlichen Ergebnissen. Auch hier weisen die mittleren Werte der Diskriminanzfunktionen beider Gruppen für beide Merkmale hochsignifikante Unterschiede auf. Die gemeinsame als auch die isolierten Diskriminanz(en) sind mit $D_{\mathrm{Korrel}}=0.49$ $D_{\mathrm{PD}}=0.05$ und $D_{\mathrm{ges}}=0.49$ allerdings geringer als für T=100. Es wird jedoch deutlich, dass eine Abgrenzung vorrangig an-



- Mittelwerte der VaR-Verteilung mit asymptotischer Methode größer
- Mittelwerte der VaR-Verteilung mit Bootstrapping größer

Abbildung 6: Abgrenzung der Ausgangsstichproben, die zu signifikant verschiedenen Mittelwerten der VaR-Verteilung führen (T = 100, VaR_{90%}).

hand der Ausfallkorrelation in der Ausgangsstichprobe erfolgen kann. Dieses Ergebnis überrascht nicht, da Höse (2007) darauf hinweist, dass vor allem hinsichtlich der Korrelation die asymptotische Konfidenzregion bei kurzen Datenhistorien ungeeignet ist. 25 Das heißt, dass Unterschiede bei der Risikobewertung zwischen den beiden hier betrachteten Methoden eher auf jenen der beiden Risikoparameter zurückzuführen sind, für den die Schätzunsicherheit mit der asymptotischen Methode schlechter abgebildet werden kann. Die Ursache hierfür ist vermutlich darin zu sehen, dass bei kurzen Datenhistorien insbesondere die Normalverteilungsannahme des Schätzers für die Korrelation verletzt wird. Damit ist zu erwarten, dass bei hinreichend langen historischen Zeiträumen mögliche signifikante Unterschiede zwischen beiden Methoden zunehmend zufälliger Natur sind und durch die Ratingklassengröße verursacht werden.

VI. Fazit

Die Berücksichtigung von Schätzunsicherheit stellt ein wichtiges Element bei der Risikobewertung dar. Bleibt diese Risikoquelle unberücksichtigt, werden Risiken und damit Eigenkapitalanforderungen falsch eingeschätzt. Zur Bewertung dieses Metarisikos werden in der Literatur asymptotische Konfidenzregionen diskutiert. Der Vorteil dieser Regionen ist darin zu sehen, dass sie verhältnismäßig einfach berechnet werden können. Gegen die Verwendung dieser Regionen könnte jedoch sprechen,

²⁵ Vgl. Höse (2007), S. 160 ff.

dass sie Annahmen hinsichtlich der Verteilung der Maximum-Likelihood-Schätzer treffen, die nur asymptotisch erfüllt werden. Besonders hinsichtlich der Anzahl historisch verfügbarer Perioden stellt sich aber die Frage, ob in der Praxis genügend Beobachtungen für die Schätzung zur Verfügung gestellt werden können.

Hier wurde festgestellt, dass in Abhängigkeit vom gewählten Vertrauensniveau des VaR die Vergleichbarkeit für unterschiedliche Periodenlängen erreicht wird. Als Fazit kann jedoch festgehalten werden, dass für die hier untersuchte Wald-Konfidenzregion mindestens 100 bis 150 historische Perioden zur Verfügung stehen müssen, damit beide Verfahren zu vergleichbaren Ergebnissen führen. In der Praxis könnte die Bereitstellung einer solchen Datenhistorie allerdings problematisch sein. Selbst wenn die Daten monatsweise ausgewertet werden würden, müssten die Ausfallzahlen der vergangenen zehn Jahre in die Schätzung einfließen. Erfolgen Schätzungen auf Jahresbasis, müsste die Kredithistorie eines Jahrhunderts zur Verfügung stehen. Weiter wurde festgestellt, dass bei kurzen Kredithistorien mit der asymptotischen Methode eher höhere Mittelwerte der VaR-Verteilungen ermittelt werden als mit Bootstrapping. Dies könnte ein Indiz dafür sein, dass mit der asymptotischen Methode das Kreditrisiko tendenziell eher überschätzt wird. Hier besteht jedoch noch Forschungsbedarf, da bei der Bewertung eines VaR und damit des ökonomischen Eigenkapitalbedarfs nicht der Mittelwert, sondern ein Quantilswert der VaR-Verteilung ausschlaggebend ist.

Die Ergebnisse der Untersuchung deuten weiter darauf hin, dass die unterschiedlichen Risikoeinschätzungen im hier verwendeten Modellrahmen vor allem aus der Bewertung der Korrelation resultieren. Ob dieser Zusammenhang auch bei anderen asymptotischen Konfidenzregionen beobachtet werden kann, wurde hier nicht untersucht. Insbesondere wäre für das hier zugrunde liegende Modell zu untersuchen, wie ein Vergleich der von Höse vorgeschlagenen, auf dem Likelihood-Verhältnis beruhenden, Konfidenzregion und Bootstrapping ausfällt. Möglicherweise führen diese Methoden schon bei kürzeren Kredithistorien zu vergleichbaren Ergebnissen. Da die LV-Region die Konfidenzintervalle der beiden Parameter jedoch sehr konservativ schätzt, ist zu vermuten, dass die Vergleichbarkeit hiervon beeinträchtigt wird. Auf Grundlage der hier erzielten Ergebnisse ist zu vermuten, dass unterschiedliche Risikoeinschätzungen verstärkt auf das Merkmal zurückzuführen sind, für welches die asymptotische Konfidenzregion eine schlechtere Abdeckwahrscheinlichkeit erreicht.

Die Untersuchung erfolgte hier für eine Ratingklasse auf Grundlage eines Beta-Binomial-Modells. Ob ähnliche Ergebnisse auch bei anderen Kreditrisikomodellen beobachtet werden können, wäre zu überprüfen. Insbesondere ist zu untersuchen, welchen Einfluss Schätzunsicherheit auf die Bewertung des Kreditrisikos in großen Portfolios mit mehreren Ratingklassen aufweist. Auch hier könnte das parametrische Bootstrapping eine geeignete Methode zur Bewertung von Schätzunsicherheit sein. Bei der Erzeugung der Bootstrappstichproben sind in diesem Fall jedoch Abhängigkeiten zwischen den Ausfallwahrscheinlichkeiten der Ratingklassen zu berücksichtigen. Für die hier erfolgte Untersuchung wäre auch von Interesse, ob und, wenn ja, wie stark die Vergleichbarkeit von der Anzahl der Debitoren in den historischen Perioden abhängt.

Anhang 1: Herleitung des Zusammenhangs in Gleichung (7)

Im Beta-Binomial-Modell werden die stochastischen Ausfallwahrscheinlichkeiten durch eine Betaverteilung beschrieben. Die erwartete Ausfallwahrscheinlichkeit p entspricht damit dem Erwartungswert der Betaverteilung: 26

$$p = \frac{\alpha}{\alpha + \beta}.$$

Die Varianz der Betaverteilung σ^2 bestimmt die Kovarianz der Ausfallvariablen zweier Kreditnehmer.²⁷ Damit kann diese durch:

(15)
$$\sigma^2 = Cov(H_{ti}, H_{tj}) = \frac{\alpha\beta}{\left(\alpha + \beta\right)^2 (\alpha + \beta + 1)} \text{ beschrieben werden.}$$

Die für alle Kreditnehmer paarweise als identisch angenommene Ausfallkorrelation ϱ ist:²⁸

$$\varrho = \frac{Cov(H_{ti}, H_{tj})}{\sqrt{Var(H_{ti})Var(H_{tj})}} = \frac{\sigma^2}{p(1-p)}.$$

Durch Einsetzen von (14) und (15) in (16) und Vereinfachen wird die Ausfallkorrelation berechnet:

 $^{^{26}\,}$ Vgl. zur Definition der Momente der Betaverteilung Vose (2005), S. 103 f.

²⁷ Vgl. Joe (1997), S. 211.

²⁸ Vgl. beispielsweise Martin/Reitz/Wehn (2006), S. 124.

(17)
$$\varrho = \frac{\sigma^2}{p(1-p)} = \frac{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}{\frac{\alpha}{\alpha+\beta}(1-\frac{\alpha}{\alpha+\beta})} = \frac{\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}}{\frac{\alpha^2+\alpha\beta-\alpha^2}{(\alpha+\beta)^2}} = \frac{1}{(\alpha+\beta+1)}.$$

Umstellen von (14) und (17) liefert:

$$\beta = \frac{a}{p} - a.$$

(19)
$$\alpha = \frac{1}{\rho} - \beta - 1.$$

Einsetzen von (18) in (19):

(20)
$$\alpha = \frac{1}{\rho} - \frac{\alpha}{p} + \alpha - 1 \to \alpha = \frac{p(1 - \varrho)}{\rho}.$$

Einsetzen von (20) in (18) führt zu:

(21)
$$\beta = \frac{\alpha}{p} - \alpha = \frac{p(1-\varrho)}{p\varrho} - \frac{p(1-\varrho)}{\varrho} = \frac{(1-p)(1-\varrho)}{\varrho}.$$

Anhang 2: Herleitung der Verteilungen der VaR

Im Folgenden wird beschrieben, wie die Verteilungen der VaR des Kreditrisikos mittels Monte-Carlo-Simulation abgeleitet werden können. Zunächst wird die Vorgehensweise bei der Verwendung asymptotischer Konfidenzregionen beschrieben.

Der asymptotischen Konfidenzregion liegt im oben beschriebenen Modell eine $\chi^2_{2,1-q}$ -Verteilung mit zwei Freiheitsgraden zugrunde. Das Vertrauensniveau ist mit 1-q bezeichnet, wobei $0 \leq q < 1$. Bei einem gegebenen Vertrauensniveau können somit alle Wertepaare (p,ϱ) der die Konfidenzregion abgrenzenden Ellipse bestimmt werden. Alle Wertepaare, die auf einer solchen Ellipse liegen, weisen dieselbe Wahrscheinlichkeit dafür auf, dass sie das tatsächliche, aber unbekannte Parameterpaar abbilden.

(Schritt AS_1) Im Rahmen der Monte-Carlo-Simulation wird zunächst aus einer Gleichverteilung zufällig ein Wert für q gezogen. Mit diesem wird das Quantil der Chiquadratverteilung an der Stelle 1-q bestimmt. Ist dieser Quantilswert gegeben, kann sowohl der maximal als auch der

minimal mögliche Wert für die Ausfallwahrscheinlichkeit p abgeleitet werden. Diese Werte entsprechen den beiden Schnittpunkten der durch q definierten Ellipse mit ihrer Hauptachse. Die Ober- und Untergrenze für p wird wie folgt berechnet:

Aus Gleichung (11) ist bekannt:

$$(22) \hspace{1cm} T \big(\big(\widetilde{\boldsymbol{p}}_{T}^{ML}, \widetilde{\boldsymbol{\varrho}}_{T}^{ML} \big) - \big(p, \varrho \big) \big) I \big(\widehat{\boldsymbol{p}}, \widehat{\boldsymbol{\varrho}} \big)_{T} \big(\big(\widetilde{\boldsymbol{p}}_{T}^{ML}, \widetilde{\boldsymbol{\varrho}}_{T}^{ML} \big) - \big(p, \varrho \big) \big)' \leq \chi_{2, 1 - \varrho}^{2},$$

wobei die rechte Seite von (22) mit dem zufällig gezogenen q berechnet werden kann. Beidseitige Division durch T und Vereinfachen führt zu:

$$(23) \qquad \qquad (\tilde{p}_T^{ML} - p\,\tilde{\varrho}_T^{ML} - \varrho) \begin{pmatrix} \widehat{I_1} & I_2 \\ I_3 & I_4 \end{pmatrix}_T \begin{pmatrix} \tilde{p}_T^{ML} - p \\ \tilde{\varrho}_T^{ML} - \varrho \end{pmatrix} \leq \frac{\chi_{2,1-q}^2}{T},$$

durch Ausmultiplizieren folgt:

$$(24) \quad (\tilde{p}_T^{ML} - p)[(\tilde{p}_T^{ML} - p)I_1 + (\tilde{\varrho}_T^{ML} - \varrho)I_3] + (\tilde{\varrho}_T^{ML} - \varrho)[(\tilde{p}_T^{ML} - p)I_2 + (\tilde{\varrho}_T^{ML} - \varrho)I_4] \leq \frac{\chi_{2,1-q}^2}{T}.$$

Da hier die Ellipse betrachtet werden soll, für welche die obige Bedingung gerade noch gilt, kann der linke Ausdruck von Ungleichung (24) gleich dem rechten Ausdruck gesetzt werden. Nach Substitution von $\tilde{p}_T^{ML} - p \equiv p^{sub}$ und $\tilde{\varrho}_T^{ML} - \varrho \equiv \varrho^{sub}$ kann (24) vereinfacht werden:

$$(25) \qquad \qquad (p^{sub})^2 I_1 + p^{sub} \varrho^{sub} (I_3 + I_2) + (\varrho^{sub})^2 I_4 - \frac{\chi^2_{2,1-q}}{T} = 0.$$

Die Lösungen für (25) lauten:

$$\varrho_{1,2}^{sub} = -\frac{p^{sub}(I_3 + I_2)}{2I_4} \pm \sqrt{\left(\frac{p^{sub}(I_3 + I_2)}{2I_4}\right)^2 - \frac{(p^{sub})^2 I_1}{I_4} + \frac{\chi_{2,1-q}^2}{TI_4}}.$$

Da an den beiden Schnittpunkten der Hauptachse mit der Ellipse der Ausfallkorrelation nur genau ein Wert zugeordnet werden kann, muss der Ausdruck unter der Wurzel in (26) den Wert Null annehmen:

$$\left(\frac{p^{sub}(I_3+I_2)}{2I_4}\right)^2 - \frac{(p^{sub})^2I_1}{I_4} + \frac{\chi_{2,1-q}^2}{TI_4} = 0.$$

Umstellen nach p^{sub} liefert:

$$p^{sub} = \pm \sqrt{\frac{-4\chi_{2,1-q}^2 I_4}{T[(I_3+I_2)^2-4I_1I_4]}},$$

mit $\tilde{p}_{T}^{ML} - p \equiv p^{sub}$ folgt:

$$p_{\min,\max} = \tilde{p}_T^{ML} \pm \sqrt{\frac{-4\chi_{2,1-q}^2 I_4}{T[(I_3 + I_2)^2 - 4I_1I_4]}}.$$

Mit Gleichung (29) kann somit das Intervall für die Ausfallwahrscheinlichkeit bei gegebenem Vertrauensniveau bestimmt werden. Dabei ist zu beachten, dass im Modell 0 gilt. Damit ergibt sich das Intervall der Ausfallwahrscheinlichkeit in Abhängigkeit von <math>q als:

$$(30) \ \left[Max \left(0 + \varepsilon; \tilde{\boldsymbol{p}}_{T}^{ML} - \sqrt{\frac{-4\chi_{2,1-q}^{2}I_{4}}{T[(I_{3} + I_{2})^{2} - 4I_{1}I_{4}]}} \right), Min \left(1 - \varepsilon; \tilde{\boldsymbol{p}}_{T}^{ML} + \sqrt{\frac{-4\chi_{2,1-q}^{2}I_{4}}{T[(I_{3} + I_{2})^{2} - 4I_{1}I_{4}]}} \right) \right], \\$$

wobei $\varepsilon \to 0$.

(Schritt AS_2) Da sämtliche Wertepaare auf der Ellipse dieselbe Wahrscheinlichkeit dafür aufweisen, dem tatsächlichen Wertepaar zu entsprechen, kann für die Ausfallwahrscheinlichkeit eine Gleichverteilung im Intervall (30) angenommen werden. Damit kann im Rahmen der Monte-Carlo-Simulation für jedes zufällig ermittelte q ein zufälliger Wert für die Ausfallwahrscheinlichkeit p_{Zufall} bestimmt werden.

(Schritt AS_3) Einer zufällig gezogenen Ausfallwahrscheinlichkeit $p_{\it Zufall}$ können maximal zwei Ausfallkorrelationen zugeordnet werden, damit Gleichung (22) erfüllt werden kann:

$$\begin{split} \varrho_{Zufall\;1,2} &= -\frac{(\tilde{p}_{T}^{ML} - p_{Zufall})(I_{3} + I_{2})}{2I_{4}} \\ &\pm \sqrt{\left(\frac{(\tilde{p}_{T}^{ML} - p_{Zufall})(I_{3} + I_{2})}{2I_{4}}\right)^{2} - \frac{(\tilde{p}_{T}^{ML} - p_{Zufall})^{2}I_{1}}{I_{4}} + \frac{\chi_{2,1-q}^{2}}{TI_{4}}}. \end{split}$$

Auch hier gilt, dass die beiden möglichen Wertepaare dieselbe Wahrscheinlichkeit dafür aufweisen, dass sie das tatsächliche Wertepaar abbilden. In der Monte-Carlo-Simulation kann damit eines der beiden Paare zufällig ausgewählt werden, wobei jedes Paar mit einer Wahrscheinlichkeit von $50\,\%$ gezogen wird.

Da in der hier zugrunde liegenden Konfidenzregion theoretisch auch Werte möglich sind, die außerhalb des Definitionsbereichs der Ausfallkorrelation liegen, werden noch folgende Annahmen getroffen:

• Liegt nur eine der beiden möglichen Ausfallkorrelationen bei gegebenen p_{Zufall} im Definitionsbereich, dann wird dieser Wert als ϱ_{Zufall} gewählt.

• Liegen beide möglichen Werte außerhalb des Definitionsbereichs, wird in der Simulation zurück zu Schritt AS_1 gegangen.

(Schritt AS_4) Mit dem zufällig ermittelten Wertepaar $(p_{Zufall}, \varrho_{Zufall})$ kann die Risikoverteilung aus Gleichung (5) parametrisiert und der VaR abgeleitet werden. Dieser wird gespeichert.

Nachdem beschrieben wurde, wie aus der asymptotischen Konfidenzregion mittels Monte-Carlo-Simulation ein zufälliger Wert für den VaR ermittelt wird, erfolgt im Folgenden eine Erläuterung der Vorgehensweise bei der Ableitung eines zufälligen Wertes für den Value at Risk, wenn die Konfidenzregion mittels Bootstrapping bestimmt wird.

(Schritt AS_5) Zur Bestimmung von zufälligen VaR auf Grundlage der mit Bootstrapping ermittelten Konfidenzregion werden die Schritte (S1) bis (S3) aus Kapitel 3 durchgeführt. Gleichung (5) wird mit dem in (S3) geschätzten Parameterpaar parametrisiert, der zugehörige VaR bestimmt und gespeichert.

(Schritt AS_6) X-maliges Wiederholen der Schritte (AS_1) bis (AS_5).

(Schritt AS_7) Ableitung der empirischen Verteilungen der VaR.

Literatur

Albrecht, P./Maurer, R. (2005): "Investment- und Risikomanagement", 2. Auflage, Stuttgart, 2005, Schäffer-Poeschel Verlag. - Basel Committee on Banking Supervision (2005): International Convergence of Capital Measurement and Capital Standards A Revised Framework, Basel. - Bleymüller, J./Gehlert, G./Gülicher, H. (1998): "Statistik für Wirtschaftswissenschaftler", 11. Auflage, München, 1998, Vahlen Verlag. - Brown, L. D./Cai, T. T./DasGupta, A. (2001): "Interval Estimation for a Binomial Proportion" in: Statistical Science, Vol. 16, No. 2, 2001, S. 101-117. - Cassart, D./Castro, C./Langendries, R./Alderweireld, T. (2007): Confidence Sets for Asset Correlation, http://www.econ.kuleuven.be/ew/academic/econmetr/abstracts/abstract0607/Iragorri.pdf (Download: 06.03.08). - Chernick, M. R. (2008): Bootstrap Methods A Guide for Practitioners and Researchers, 2. Auflage, John Wiley and Sons. - Christensen, J. H. E./Hansen, E./Lando, D. (2004): Confidence sets for continuous-time rating transition probabilities, in: Journal of Banking & Finance 28, S. 2575-2602. - Dannenberg, H. (2007): Berücksichtigung von Schätzunsicherheit bei der Risikobewertung, in: CM Controller Magazin, 6/2007, S. 630-634. - Dannenberg, H. (2008): Vergleich der Kreditrisikobewertung bei Berücksichtigung von Schätzunsicherheit und Korrelation, in: Die Unternehmung, 5/2008, S. 462-481. - Embrechts, P./Frey, R./McNeil, A. J. (2005): Quantitative Risk Management Concepts, Techniques and Tools, Princeton, Oxford, Princeton University Press. - Efron, B. (1979): Bootstrap Methods: Another Look at the Jackknife, in: The Annals of Statistics, Vol. 7, No. 1, S. 1–26. – Frey, R./McNeil, A. J.

(2003): Dependent defaults in models of portfolio credit risk, in: Journal of Risk, Vol. 6, No. 1, Fall, S. 59-92. - Gleißner, W./Romeike, F. (2008): Risikoblindheit und Methodikschwächen, in: RISIKO MANAGER 21/2008 S. 1 & S. 8-12. - Hamerle, A./Knapp, M./Liebig, T./Wildenauer, N. (2005): Incorporating prediction and estimation risk in point-in-time credit portfolio models, in: Deutsche Bundesbank Discussion Paper 13/2005. - Hanson, S./Schuermann, T. (2006): Confidence intervals for probabilities of default, in: Journal of Banking & Finance 30, S. 2281-2301. - Höse, B. S. (2007): Statistische Genauigkeit bei der simultanen Schätzung von Abhängigkeitsstrukturen und Ausfallwahrscheinlichkeiten in Kreditportfolios, Aachen, Shaker Verlag. - Joe, H. (1997): Multivariate Models and Dependence Concepts, London, Chapman & Hall. - Kapalanski, G. (2002): VAR risk measurement vs traditional risk measures: an analysis and survey, in: Journal of Risk, Volume 4, No. 3, Spring 2002, S. 1-27. - Lawrenz, J. (2008): Assessing the Estimation Uncertainty of Default Probabilities, in: Kredit und Kapital, Heft 2, 2008. - Martin, M. R. W./Reitz, S./Wehn, C. S. (2006): Kreditderivate und Kreditrisikomodelle Eine mathematische Einführung, Wiesbaden, Vieweg & Sohn Verlag. -Miao, W./Gastwirth, J. L. (2004): The Effect of Dependence on Confidence Intervals for a Population Proportion, in: American Statistical Association, Vol. 58, No. 2, S. 124-130. - Pluto, K./Tasche, D. (2005): Thinking positively, in: Risk, August, S. 72-78. - Stein, R. M. (2003): Are the probabilities right?, Technical report #030124, Moody's KMV. - Trück, S./Rachev, S. T. (2005): Credit portfolio risk and probability of default confidence sets through the business cycle, Journal of credit Risk, Vol. 1, No. 4, S. 61-88. - Vose, D. (2005): Risk analysis A quantitative guide, 2. korrigierte Auflage, John Wiley and Sons.

Zusammenfassung

Berücksichtigung von Schätzunsicherheit bei der Kreditrisikobewertung Vergleich des Value at Risk der Verlustverteilung des Kreditrisikos bei Verwendung von Bootstrapping und einem asymptotischen Ansatz

Bei der Kreditrisikobewertung müssen die Parameter Ausfallwahrscheinlichkeit und -korrelation geschätzt werden. Diese Schätzung erfolgt unter Unsicherheit. In der Literatur werden asymptotische Konfidenzregionen diskutiert, um diese Unsicherheit bei der simultanen Schätzung beider Parameter zu bewerten. Diese Regionen setzen allerdings eine sehr lange Datenhistorie für eine genaue Bewertung voraus. Als Alternative bietet sich bei kurzen Datenhistorien Bootstrapping an. Diese Methode ist allerdings deutlich rechenintensiver. Im vorliegenden Beitrag wird untersucht, ab welcher Anzahl historisch verfügbarer Perioden Bootstrapping und eine Wald-Konfidenzregion zu einer vergleichbaren Bewertung des Kreditrisikos gelangen. Die hier genutzten Methoden führen zu ähnlichen Ergebnissen, wenn über 100 historische Perioden zur Verfügung stehen. (JEL C15, D81, G11)

Summary

Taking Account of Estimation Uncertainty in Credit Risk Assessment Value-at-Risk Comparison Using Bootstrapping and an Asymptotic Approach

Credit risk assessment requires both probability of default and correlation to be estimated. However, such estimation is subject to uncertainty. In order to assess the uncertainty affecting the simultaneous estimation of both parameters, the discussion in literature focuses on the use of asymptotic confidence regions. However, such regions need a very long credit history to allow such assessment to be exact. Bootstrapping represents an alternative method where the data history is short. But this method gives rise to noticeably more intense calculation work. The present article examines the minimum number of periods that must be available in order that bootstrapping and a Wald confidence region permit a comparable assessment of the credit risk. The methods applied here generate similar results where more than 100 historical periods are available.